Judith Bronstein

Judith Bronstein

Professor, Ecology and Evolutionary Biology
Professor, Entomology / Insect Science - GIDP
University Distinguished Professor
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Contact
(520) 621-3534

Research Interest

Judith L. Bronstein is University Distinguished Professor of Ecology and Evolutionary Biology, with a joint appointment in the Department of Entomology. Dr. Bronstein’s large, active lab focuses on the ecology and evolution of interspecific interactions, particularly on the poorly-understood, mutually beneficial ones (mutualisms). Using a combination of field observations, experiments, and theory, they are examining how population processes, abiotic conditions, and the community context determine net effects of interactions for the fitness of each participant species. Specific conceptual areas of interest include: (i) conflicts of interest between mutualists and their consequences for the maintenance of beneficial outcomes; (ii) the causes and consequences of "cheating" within mutualism; (iii) context-dependent outcomes in both mutualisms and antagonisms; and (iv) anthropogenic threats to mutualisms. In addition, she is Editor-in-Chief of The American Naturalist, a leading international journal in ecology and evolution. An award-winning instructor, Dr. Bronstein teaches at both the undergraduate and graduate levels; she has also run a large training grant administered by BIO5 that places life sciences graduate students in public school classrooms around Tucson. She serves in leadership positions in the College of Science (including chairing the College of Science Promotion and Tenure Committee for 2013), at the University, and at the Arizona-Sonora Desert Museum, where she is a member of the Board of Trustees and Chair of the Science and Conservation Council.

Publications

Bronstein, J. L., & McKey, D. (1989). The fig/pollinator mutualism: A model system for comparative biology. Experientia, 45(7), 601-604.
Bronstein, J. L. (1994). Conditional outcomes in mutualistic interactions. Trends in Ecology and Evolution, 9(6), 214-217.

PMID: 21236825;Abstract:

Interspecific interactions are traditionally displayed in a grid in which each interaction is placed according to its outcome (positive, negative or neutral) for each partner. However, recent field studies consistently find the costs and benefits that determine net effects to vary greatly in both space and time, inevitably causing outcomes within most interactions to vary as well. Interactions show 'conditionally' when costs and benefits, and thus outcomes, are affected in predictable ways by current ecological conditions. The full range of natural outcomes of a given association may reveal far more about its ecological and evolutionary dynamics than does the average outcome at a given place and time.

Alarcon, R., Riffell, J. A., Davidowitz, G. -., Hildebrand, J. G., & Bronstein, J. -. (2010). Sex-dependent variation in the floral preferences of the hawkmoth Manduca sexta. Animal Behavior, 80, 289-296.
Boyle, W. A., & Bronstein, J. L. (2012). Phenology of tropical understory trees: Patterns and correlates. Revista de Biologia Tropical, 60(4), 1415-1429.

PMID: 23342499;Abstract:

Reproductive phenologies of plants are constrained by climate in highly seasonal regions. In contrast, plants growing in wet tropical forests are freed from many abiotic constraints, which in canopy tree communities lead to a rich diversity of phenological patterns within and among individuals, species and communities. However, basic descriptions of tropical phenological patterns and the processes that shape them are rare. Here, we document the individual-, population-, and landscape-level phenological patterns of two dominant families of understory woody plants important to avian frugivores, the Melastomataceae and Rubiaceae, along an elevational transect in Costa Rica. The 226 individual plants belonging to 35 species in this study, varied in the number of reproductive bouts/year, and the timing, duration, and synchrony of reproductive stages. This variation was not related to factors related to their interactions with mutualists and antagonists, nor did it appear to be constrained by phylogeny. Diverse phenological patterns among species led to relatively aseasonal patterns at the community and landscape level. Overall, evidence for biotic processes shaping temporal patterns of fruiting phenology was weak or absent. These findings reveal a number of unexplained patterns, and suggest that factors shaping phenology in relatively aseasonal forests operate in idiosyncratic ways at the species level.

Bronstein, J. L., Gouyon, P. -., Gliddon, C., Kjellberg, F., & Michaloud, G. (1990). The ecological consequences of flowering asynchrony in monoecious figs: a simulation study. Ecology, 71(6), 2145-2156.

Abstract:

For plants with temporally separate sexual phases to outcross, population-level flowering asynchrony is necessary, but this can decrease the resource base available for pollinators. In figs, flowering is synchronous within a tree and the specialist pollinators/seed predators can only survive briefly away from trees. Consequently, population-level flowering asynchrony must extend year-round for pollinators to persist locally. In repeated stochastic simulations using phenological traits of Ficus natalensis, a median of 95 trees was required to produce an asynchronous sequence that could maintain local pollinator populations for 4 yr. However, many trees in those simulated populations were either male-sterile (10%) or both male- and female-sterile (35%), because their sexual phases were not well timed with the opposite phases of other trees. Sterility within a population approached zero at 2-3 times the critical population size. Both the predicted critical population size and frequency of success of the trees within it depended strongly on the duration of reproductive episodes and the intervals between episodes. Doubling the length of time over which individuals could donate pollen resulted in a 39% decrease in critical population size and a 27% increased likelihood that individuals would achieve at least some reproductive success. -from Authors