Renee A Duckworth

Renee A Duckworth

Associate Professor, Ecology and Evolutionary Biology
Member of the Graduate Faculty
Associate Professor, BIO5 Institute
Primary Department
Contact
(520) 626-0734

Research Interest

Dr. Renee Duckworth, Ph.D. is Associate Professor of Ecology and Evolutionary Biology. The ultimate goal of her work is to understand the link between micro and macroevolutionary processes with specific focus on ecological feedbacks and evolutionary diversification. To achieve these goals, she integrates approaches from evolutionary and physiological ecology to quantitative genetic and genomic methods. Her current work uses large-scale field experiments, empirical measures of lifetime fitness and molecular multi-generational pedigree reconstruction to investigate the dynamics of trait evolution in the context of range expansion and species coexistence in passerine birds. Current projects in the lab include the evolution of adaptive introgression, the mechanisms of species coexistence at range margins, the role of adaptive maternal effects in range expansion, and the origin and evolution of animal personality traits.

Publications

Duckworth, R., & Duckworth, R. A. (2009). Maternal effects and range expansion: a key factor in a dynamic process?. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 364(1520).

Species that depend on ephemeral habitat often evolve distinct dispersal strategies in which the propensity to disperse is closely integrated with a suite of morphological, behavioural and physiological traits that influence colonizing ability. These strategies are maintained by natural selection resulting from spatial and temporal variation in resource abundance and are particularly evident during range expansion. Yet the mechanisms that maintain close alignment of such strategies with resource availability, integrate suites of dispersal traits and generate variability in dispersal propensity are rarely known. Breeding females can influence offspring phenotype in response to changes in current environmental conditions, making maternal effects uniquely suited to bridge fluctuations in resource abundance in the maternal generation and variation in offspring dispersal ability. Western bluebirds' (Sialia mexicana) dependence on nest cavities--an ephemeral resource--has led to the evolution of two distinct dispersal phenotypes: aggressive males that disperse and non-aggressive males that remain philopatric and cooperate with their relatives. Over the last 40 years, western bluebirds rapidly expanded their geographical range, providing us with an opportunity to test, in newly established populations, the importance of maternal effects for generating variability in dispersal propensity. Here, I show that, under variable resource conditions, breeding females group offspring of different competitive ability in different positions in the egg-laying order and, consequently, produce aggressive males that are more likely to disperse when resources are low and non-aggressive philopatric males when resources are abundant. I then show experimentally that the association between resource availability and sex-specific birth order is robust across populations. Thus, this maternal effect enables close tracking of resource availability and may explain how variation in dispersal is generated in newly colonized populations. More generally, these results suggest that, as a key source of variation in colonizing phenotypes, maternal effects are of crucial importance for understanding the dynamics of range expansion.

Nolan, P. M., Duckworth, R. A., Hill, G. E., & Roberts, S. R. (2000). Maintenance of a captive flock of house finches free of infection by Mycoplasma gallisepticum. Avian Diseases, 44(4), 948-952.

PMID: 11195652;Abstract:

Since the beginning of an epidemic of conjunctivitis in wild house finches caused by Mycoplasma gallisepticum (MG), all captive colonies established by capturing free-ranging house finches from the eastern population have also either been infected at the time of capture or developed infection shortly after capture. In an attempt to avoid this infection in captive flocks being maintained for studies of the finches' behavior and ecology, we compared two different flock management strategies and were able to prevent the development of mycoplasmal conjunctivitis with one of the strategies. Single-sex flocks were built by introducing only seronegative wild-caught birds showing no clinical signs of conjunctivitis and covering their outdoor flight cages with netting to prevent interaction with other wild birds although only the female flocks were initially treated with a 6-wk course of tylosin tartrate (0.3 mg/ml). The female flocks never developed conjunctivitis although the disease did develop in the male flocks. Furthermore, serologic assessments of the healthy flock by serum plate agglutination assays for MG indicated that the females remained free of MG infection in the final 7 wk of the study, during which they were unmedicated. We conclude that any low-level MG infection not diagnosed by the initial test for seroconversion was cleared by the prolonged drug treatment.

Duckworth, R. A. (2013). Epigenetic inheritance systems act as a bridge between ecological and evolutionary timescales. Behavioral Ecology, 24(2), 327-328.
Badyaev, A., Hill, G., Beck, M., Dervan, A., Duckworth, R., McGraw, K., Nolan, P., & Whittingham, L. (2003). Sex-biased hatching order and adaptive population divergence in a passerine bird. SCIENCE, 295(5553), 316-318.

Most species of birds can lay only one egg per day until a clutch is complete, and the order in which eggs are laid often has strong and sex-specific effects on offspring growth and survival. In two recently established populations of the house finch (Carpodacus mexicanus) in Montana and Alabama, breeding females simultaneously adjusted the sex and growth of offspring in relation to their position in the laying order, thereby reducing the mortality of sons and daughters by 10 to 20% in both environments. We show experimentally that the reduction in mortality is produced by persistent and sex-specific maternal effects on the growth and morphology of offspring, These strong parental effects may have facilitated the rapid adaptive divergence among populations of house finches.

Duckworth, R. A., & E., L. (2009). Evolution of genetic integration between dispersal and colonization ability in a bird. Evolution, 63(4), 968-977.

PMID: 19154391;Abstract:

Discrete behavioral strategies comprise a suite of traits closely integrated in their expression with consistent natural selection for such coexpression leading to developmental and genetic integration of their components. However, behavioral traits are often also selected to respond rapidly to changing environments, which should both favor their context-dependent expression and inhibit evolution of genetic integration with other, less flexible traits. Here we use a multigeneration pedigree and long-term data on lifetime fitness to test whether behaviors comprising distinct dispersal strategies of western bluebirds - a species in which the propensity to disperse is functionally integrated with aggressive behavior - are genetically correlated. We further investigated whether selection favors flexibility in the expression of aggression in relation to current social context. We found a significant genetic correlation between aggression and dispersal that is concordant with consistent selection for coexpression of these behaviors. To a limited extent, individuals modified their aggression to match their mate; however, we found no fitness consequences on such adjustments. These results introduce a novel way of viewing behavioral strategies, where flexibility of behavior, while often aiding an organism's fit in its current environment, may be limited and thereby enable integration with less flexible traits. © 2009 The Author(s).