Judith Bronstein

Judith Bronstein

Professor, Ecology and Evolutionary Biology
Professor, Entomology / Insect Science - GIDP
University Distinguished Professor
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Contact
(520) 621-3534

Research Interest

Judith L. Bronstein is University Distinguished Professor of Ecology and Evolutionary Biology, with a joint appointment in the Department of Entomology. Dr. Bronstein’s large, active lab focuses on the ecology and evolution of interspecific interactions, particularly on the poorly-understood, mutually beneficial ones (mutualisms). Using a combination of field observations, experiments, and theory, they are examining how population processes, abiotic conditions, and the community context determine net effects of interactions for the fitness of each participant species. Specific conceptual areas of interest include: (i) conflicts of interest between mutualists and their consequences for the maintenance of beneficial outcomes; (ii) the causes and consequences of "cheating" within mutualism; (iii) context-dependent outcomes in both mutualisms and antagonisms; and (iv) anthropogenic threats to mutualisms. In addition, she is Editor-in-Chief of The American Naturalist, a leading international journal in ecology and evolution. An award-winning instructor, Dr. Bronstein teaches at both the undergraduate and graduate levels; she has also run a large training grant administered by BIO5 that places life sciences graduate students in public school classrooms around Tucson. She serves in leadership positions in the College of Science (including chairing the College of Science Promotion and Tenure Committee for 2013), at the University, and at the Arizona-Sonora Desert Museum, where she is a member of the Board of Trustees and Chair of the Science and Conservation Council.

Publications

Bronstein, J. L. (2001). The costs of mutualism. American Zoologist, 41(4), 825-839.

Abstract:

Mutualisms arc of central importance in biological systems. Despite growing attention in recent years, however, few conceptual themes have yet to be identified that span mutualisms differing in natural history. Here I examine the idea that the ecology and evolution of mutualisms are shaped by diverse costs, not only by the benefits they confer. This concept helps link mutualism to antagonisms such as herbivory, prédation, and parasitism, interactions defined largely by the existence of costs. I first briefly review the range of costs associated with mutualisms, then describe how one cost, the consumption of seeds by pollinator offspring, was quantified for one fig/pollinator mutualism. I compare this cost to published values for other fig/pollinator mutualisms and for other kinds of pollinating seed parasite mutualisms, notably the yucca/yucca moth interaction. I then discuss four issues that fundamentally complicate comparative studies of the cost of mutualism:. problems of knowing how to measure the magnitude of any one cost accurately; problems associated with using average estimates in the absence of data on sources of variation; complications arising from the complex correlates of costs, such as functional linkages between costs and benefits; and problems that arise from considering the cost of mutualism as a unilateral issue in what is fundamentally a reciprocal interaction. The rich diversity of as-yet unaddressed questions surrounding the costs of mutualism may best be investigated via detailed studies of individual interactions.

Bronstein, J., Rafferty, N., & Bertelson, D. (2015). Later flowering is associated with a compressed flowering season and reduced reproductive output in an early season floral resource. Oikos.
Ziv, Y., & Bronstein, J. L. (1996). Infertile seeds of Yucca schottii: A beneficial role for the plant in the yucca-yucca moth mutualism?. Evolutionary Ecology, 10(1), 63-76.

Abstract:

The yucca-yucca moth interaction is a classic case of obligate mutualism. Female moths pollinate and oviposit in the gynoecium of the flower; however, maturing larvae eat a fraction of the developing seeds. We studied within-fruit distributions of four seed types (fertile, infertile, eaten and uneaten seeds) in order to evaluate costs and benefits in a Yucca schottii population in southeastern Arizona. We focused on how the spatial arrangement of seeds affected larval behaviour and, hence, the costs of the mutualism to the yucca. Infertile seeds were distributed throughout both infested and uninfested locules. Additionally, moth larvae feeding in a single locule preferred fertile seeds and even avoided infertile seeds and left the fruit significantly more often when they encountered infertile seeds. We suggest that, regardless of the cause of infertile seeds, they function as blocking units within seed locules and therefore reduce seed predation by moth larvae. We also suggest that, together with certain other fruit traits, the presence of infertile seeds promotes the evolutionary stability of this pollination mutualism. © 1996 Chapman & Hall.

Fitzpatrick, G., Davidowitz, G., & Bronstein, J. L. (2013). An herbivore's thermal tolerance is higher than that of the ant defenders in a desert protection mutualism. Sociobiology, 60(3), 252-258.

Abstract:

In North American deserts, many species of cactus attract ants to their extrafloral nectaries; the ants actively defend the food source, and hence the plant, against herbivores. In thermally extreme environments, however, networks of positive and negative interactions like these are likely to be sensitive to the thermal limitations of each of the interacting species. We compared the thermal tolerance of a common phytophagous cactus bug, Narnia pallidicornis (Hemiptera: Coreidae), to that of the ants that defend the cactus Ferocactus wislizeni in the Sonoran Desert, USA. We used flow-through respirometry to experimentally determine the thermal limit of the herbivore and compared this to the thermal limits of the ant defenders, determined previously. In the field, we recorded herbivore frequency (proportion of plants with N. pallidicornis) and abundance (the number of N. pallidicornis per plant) in relation to ambient temperature, ant species presence and identity, and fruit production. We show that N. pallidicornis has a higher thermal tolerance than the four most common ant mutualists, and in the laboratory can survive very high temperatures, up to 43°C. Herbivore frequency and abundance in the field were not related to the daily high temperatures observed. Plants that were not defended by ants were occupied by more N. pallidicornis, although they showed no reduction in fruit set. Therefore, herbivory is likely to continue on fishhook barrel cacti even at high temperatures, especially those temperatures beyond the thermal tolerance of the ant defenders. The consequences of increased herbivory, however, remain unclear. Mutualisms are essential for ecosystem functioning; it is important to understand the thermal sensitivity of these interactions, especially in light of expected increases in global temperature regimes.

Bronstein, J. L. (2013). Letter from the editor. American Naturalist, 181(1), 1-3.