E.Fiona Bailey

E.Fiona Bailey

Professor, Physiology
Professor, Evelyn F Mcknight Brain Institute
Professor, Speech/Language and Hearing
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 626-8299

Research Interest

My research focus is the neural control of breathing in human and nonhuman mammals. My earlier work assessed the role of pulmonary stretch receptors and central chemoreceptors in the genesis and relief of dyspnea or shortness of breath in healthy adults. These studies led to studies in the mammalian (rodent) airway that explored the modulation of upper airway muscles activities by chemical and pulmonary afferent feedback and the potential for selective electrical stimulation of the cranial nerve XII to alter airway geometry and volume (NIH/NIDCD RO3). Beginning in 2005, with the support of an NIH/NIDCD K23 I began work in neural control of upper airway muscles using tungsten microelectrodes to record from single motor units in adult human subjects. This work led in turn, to studies of regional (or segmental) muscle and motor unit activities in human subjects under volitional, state-dependent (i.e., wake/sleep) and chemoreceptor drives, in health and disease (NIH/NIDCD RO1). On the basis of the experimental work in muscle and motor units I have pursued additional lines of enquiry focused on clinical respiratory dysfunction in two specific populations a) infants at risk for SIDS and b) adults diagnosed with obstructive sleep apnea (OSA). Both lines of enquiry are highly innovative and have diagnostic and clinical applications. One recent line of enquiry explores the potential for a non-pharmacologic intervention daily to lower blood pressure and to improve sleep in patients diagnosed with mild-moderate obstructive sleep apnea. This training protocol shows promise as a cheap, effective and safe means of lowering blood pressure and improving autonomic-cardiovascular dysfunction in patients who are unwilling or unable to use the standard CPAP therapy.

Publications

Bailey, E. F., Huang, Y., & Fregosi, R. F. (2006). Anatomic consequences of intrinsic tongue muscle activation. Journal of applied physiology (Bethesda, Md. : 1985), 101(5), 1377-85.

We recently showed respiratory-related coactivation of both extrinsic and intrinsic tongue muscles in the rat. Here, we test the hypothesis that intrinsic tongue muscles contribute importantly to changes in velopharyngeal airway volume. Spontaneously breathing anesthetized rats were placed in a MRI scanner. A catheter was placed in the hypopharynx and connected to a pressure source. Axial and sagittal images of the velopharyngeal airway were obtained, and the volume of each image was computed at airway pressures ranging from +5.0 to -5.0 cm H2O. We obtained images in the hypoglossal intact animal (i.e., coactivation of intrinsic and extrinsic tongue muscles) and after selective denervation of the intrinsic tongue muscles, with and without electrical stimulation. Denervation of the intrinsic tongue muscles reduced velopharyngeal airway volume at atmospheric and positive airway pressures. Electrical stimulation of the intact hypoglossal nerve increased velopharyngeal airway volume; however, when stimulation was repeated after selective denervation of the intrinsic tongue muscles, the increase in velopharyngeal airway volume was significantly attenuated. These findings support our working hypothesis that intrinsic tongue muscles play a critical role in modulating upper airway patency.

Bailey, E. F. (2017). Association between laryngeal airway aperture and the discharge of genioglossus motor units. Frontiers in Respiratory Physiology.
Bailey, E. F. (2016). Inspiratory Muscle Training Improves Sleep and Mitigates Cardiovascular Dysfunction in Obstructive Sleep Apnea. Sleep.
LaCross, A., Watson, P. J., & Bailey, E. F. (2017). Association between Laryngeal Airway Aperture and the Discharge Rates of Genioglossus Motor Units. Frontiers in physiology, 8, 27.

We know very little about how muscles and motor units in one region of the upper airway are impacted by adjustments in an adjacent airway region. In this case, the focus is on regulation of the expiratory airstream by the larynx and how changes in laryngeal aperture impact muscle motor unit activities downstream in the pharynx. We selected sound production as a framework for study as it requires (i) sustained expiratory airflow, (ii) laryngeal airway regulation for production of whisper and voice, and (iii) pharyngeal airway regulation for production of different vowel sounds. We used these features as the means of manipulating expiratory airflow, pharyngeal, and laryngeal airway opening to compare the effect of each on the activation of genioglossus (GG) muscle motor units in the pharynx. We show that some GG muscle motor units (a) discharge stably on expiration associated with production of vowel sounds, (b) are exquisitely sensitive to subtle alterations in laryngeal airflow, and (c) discharge at higher firing rates in high flow vs. low flow conditions even when producing the same vowel sound. Our results reveal subtle changes in GG motor unit discharge rates that correlate with changes imposed at the larynx, and which may contribute to the regulation of the expiratory airstream.