E.Fiona Bailey
Professor, BIO5 Institute
Professor, Evelyn F Mcknight Brain Institute
Professor, Physiology
Professor, Speech/Language and Hearing
Primary Department
Department Affiliations
(520) 626-8299
Research Interest
My research focus is the neural control of breathing in human and nonhuman mammals. My earlier work assessed the role of pulmonary stretch receptors and central chemoreceptors in the genesis and relief of dyspnea or shortness of breath in healthy adults. These studies led to studies in the mammalian (rodent) airway that explored the modulation of upper airway muscles activities by chemical and pulmonary afferent feedback and the potential for selective electrical stimulation of the cranial nerve XII to alter airway geometry and volume (NIH/NIDCD RO3). Beginning in 2005, with the support of an NIH/NIDCD K23 I began work in neural control of upper airway muscles using tungsten microelectrodes to record from single motor units in adult human subjects. This work led in turn, to studies of regional (or segmental) muscle and motor unit activities in human subjects under volitional, state-dependent (i.e., wake/sleep) and chemoreceptor drives, in health and disease (NIH/NIDCD RO1). On the basis of the experimental work in muscle and motor units I have pursued additional lines of enquiry focused on clinical respiratory dysfunction in two specific populations a) infants at risk for SIDS and b) adults diagnosed with obstructive sleep apnea (OSA). Both lines of enquiry are highly innovative and have diagnostic and clinical applications. One recent line of enquiry explores the potential for a non-pharmacologic intervention daily to lower blood pressure and to improve sleep in patients diagnosed with mild-moderate obstructive sleep apnea. This training protocol shows promise as a cheap, effective and safe means of lowering blood pressure and improving autonomic-cardiovascular dysfunction in patients who are unwilling or unable to use the standard CPAP therapy.


Bailey, E. F., Huang, Y., & Fregosi, R. F. (2006). Anatomic consequences of intrinsic tongue muscle activation. Journal of applied physiology (Bethesda, Md. : 1985), 101(5), 1377-85.

We recently showed respiratory-related coactivation of both extrinsic and intrinsic tongue muscles in the rat. Here, we test the hypothesis that intrinsic tongue muscles contribute importantly to changes in velopharyngeal airway volume. Spontaneously breathing anesthetized rats were placed in a MRI scanner. A catheter was placed in the hypopharynx and connected to a pressure source. Axial and sagittal images of the velopharyngeal airway were obtained, and the volume of each image was computed at airway pressures ranging from +5.0 to -5.0 cm H2O. We obtained images in the hypoglossal intact animal (i.e., coactivation of intrinsic and extrinsic tongue muscles) and after selective denervation of the intrinsic tongue muscles, with and without electrical stimulation. Denervation of the intrinsic tongue muscles reduced velopharyngeal airway volume at atmospheric and positive airway pressures. Electrical stimulation of the intact hypoglossal nerve increased velopharyngeal airway volume; however, when stimulation was repeated after selective denervation of the intrinsic tongue muscles, the increase in velopharyngeal airway volume was significantly attenuated. These findings support our working hypothesis that intrinsic tongue muscles play a critical role in modulating upper airway patency.

Bailey, E. F. (2017). Association between laryngeal airway aperture and the discharge of genioglossus motor units. Frontiers in Respiratory Physiology.
Bailey, E. F. (2016). Inspiratory Muscle Training Improves Sleep and Mitigates Cardiovascular Dysfunction in Obstructive Sleep Apnea. Sleep.
LaCross, A., Watson, P. J., & Bailey, E. F. (2017). Association between Laryngeal Airway Aperture and the Discharge Rates of Genioglossus Motor Units. Frontiers in physiology, 8, 27.

We know very little about how muscles and motor units in one region of the upper airway are impacted by adjustments in an adjacent airway region. In this case, the focus is on regulation of the expiratory airstream by the larynx and how changes in laryngeal aperture impact muscle motor unit activities downstream in the pharynx. We selected sound production as a framework for study as it requires (i) sustained expiratory airflow, (ii) laryngeal airway regulation for production of whisper and voice, and (iii) pharyngeal airway regulation for production of different vowel sounds. We used these features as the means of manipulating expiratory airflow, pharyngeal, and laryngeal airway opening to compare the effect of each on the activation of genioglossus (GG) muscle motor units in the pharynx. We show that some GG muscle motor units (a) discharge stably on expiration associated with production of vowel sounds, (b) are exquisitely sensitive to subtle alterations in laryngeal airflow, and (c) discharge at higher firing rates in high flow vs. low flow conditions even when producing the same vowel sound. Our results reveal subtle changes in GG motor unit discharge rates that correlate with changes imposed at the larynx, and which may contribute to the regulation of the expiratory airstream.

Bailey, E. F., & Hoit, J. D. (2002). Speaking and breathing in high respiratory drive. Journal of speech, language, and hearing research : JSLHR, 45(1), 89-99.

Pulmonary ventilation during speech breathing reflects the sum of the airflow changes used to speak and to meet the metabolic needs of the body. Studying interactions between speaking and breathing may provide insights into the mechanisms of shared respiratory control. The purposes of this study were to determine if healthy subjects exhibit task-specific breathing behaviors in high respiratory drive and to document subjects' perceptions during breathing and speaking under these conditions. Ten men were studied in air and high CO2. Magnetometers were used to estimate lung volume, rib cage and abdomen volumes, minute volume, breathing frequency, tidal volume, inspiratory and expiratory duration, and inspiratory and expiratory flow. Subjects' perceptions were assessed informally. Results indicated that the chest wall kinematic behaviors associated with breathing and speaking in high drive were similar in pattern but differed in the magnitudes of lung volume and rib cage volume events and in inspiratory and expiratory flow. Linguistic influences remained strong, but not as strong as under normal conditions. All subjects reported a heightened sense of breathing-related discomfort during speaking as opposed to breathing in high respiratory drive. We conclude that in healthy subjects breathing behavior associated with speaking in high respiratory drive is guided continuously by shared linguistic and metabolic influences. A parallel-processing model is proposed to explain the behaviors observed.