Laurence Hurley

Laurence Hurley

Associate Director, BIO5 Institute
Professor, Medicinal Chemistry-Pharmaceutical Sciences
Professor, Medicinal Chemistry-Pharmacology and Toxicology
Professor, Cancer Biology - GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-5622

Work Summary

Laurence Hurley's long-time research interest is in molecular targeting of DNA, first by covalent binders (CC-1065 and psorospermin), then as compounds that target protein–DNA complexes (pluramycins and Et 743), and most recently as four-stranded DNA structures (G-quadruplexes and i-motifs). He was the first to show that targeting G-quadruplexes could inhibit telomerase (Sun et al. [1997] J. Med. Chem., 40, 2113) and that targeting G-quadruplexes in promoter complexes results in inhibition of transcription (Siddiqui-Jain et al. [2002] Proc. Natl. Acad. Sci. U.S.A., 99, 11593).

Research Interest

Laurence Hurley, PhD, embraces an overall objective to design and develop novel antitumor agents that will extend the productive lives of patients who have cancer. His research program in medicinal chemistry depends upon a structure-based approach to drug design that is intertwined with a clinical oncology program in cancer therapeutics directed by Professor Daniel Von Hoff at TGen at the Mayo Clinic in Scottsdale. Dr. Hurley directs a research group that consists of a team of graduate and postdoctoral students with expertise in structural and synthetic chemistry working alongside students in biochemistry and molecular biology. NMR and in vivo evaluations of novel agents are carried out in collaboration with other research groups in the Arizona Cancer Center. At present, they have a number of different groups of compounds that target a variety of intracellular receptors. These receptors include: (1) transcriptional regulatory elements, (2) those involved in cell signaling pathways, and (3) protein-DNA complexes, including transcriptional factor-DNA complexes.In close collaboration with Dr. Gary Flynn in Medicinal Chemistry, he has an ongoing program to target a number of important kinases, including aurora kinases A and B, p38, and B-raf. These studies involve structure-based approaches as well as virtual screening. Molecular modeling and synthetic medicinal chemistry are important tools.The protein–DNA complexes involved in transcriptional activation of promoter complexes using secondary DNA structures are also targets for drug design.

Publications

Hurley, L. H. (2001). Secondary DNA structures as molecular targets for cancer therapeutics. Biochemical Society Transactions, 29(6), 692-696.

PMID: 11709056;Abstract:

DNA sequence information is pivotal to transcription, replication and recombination. DNA structure is dependent upon intracellular conditions such as ion concentration and the presence of proteins that may bind to DNA to facilitate the interconversion between different forms and to stabilize specific secondary structures. Dependent upon the primary DNA sequence, purine- and pyrimidine-rich strands of DNA can adopt four-stranded structures known as G-quadruplexes and i-motifs, respectively. These structures have been proposed to exist in biologically important regions of DNA, e.g. at the end of chromosomes and in the regulatory regions of oncogenes such as c-myc. Proteins such as topoisomerase I and Rap1 can facilitate the formation of G-quadruplex structures, and for transcriptional activation of c-myc, proteins such as NM23-H2 and hnRNP K are required. These proteins bind to the non-duplex forms of the nuclease hypersensitivity element III1 of c-myc. The design and synthesis of small molecules that target these secondary DNA structures and the biochemical and biological effects of these compounds are of potential importance in cancer chemotherapy.

II, B. M., Seaman, F. C., Wheelhouse, R. T., & Hurley, L. H. (1998). Erratum: Mechanism for the catalytic activation of ecteinascidin 743 and its subsequent alkylation of guanine N2 (Journal of the American Chemical Society (1998) 120 (2490-91)). Journal of the American Chemical Society, 120(38), 9975-.
V., P., Hahn, S., Beman, C., Biswanath, D. e., Brooks, T. A., Gokhale, V., & Hurley, L. H. (2012). Anticancer activity and cellular repression of c-MYC by the G-quadruplex-stabilizing 11-piperazinylquindoline is not dependent on direct targeting of the G-quadruplex in the c-MYC promoter. Journal of Medicinal Chemistry, 55(13), 6076-6086.

PMID: 22691117;PMCID: PMC3395776;Abstract:

This G-rich region of the c-MYC promoter has been shown to form a G-quadruplex structure that acts as a silencer element for c-MYC transcriptional control. In the present work, we have synthesized a series of 11-substituted quindoline analogues as c-MYC G-quadruplex-stabilizing compounds, and the cell-free and in vitro activity of these compounds were evaluated. Two lead compounds (4 and 12) demonstrated good cell-free profiles, and compound 4 (2-(4-(10H-indolo[3,2-b]quinolin-11-yl)piperazin-1-yl)-N,N-dimethylethanamine) significantly down-regulated c-MYC expression. However, despite the good cell-free activity and the effect of these compounds on c-MYC gene expression, we have demonstrated, using a cellular assay in a Burkitts lymphoma cell line (CA46-specific), that these effects were not mediated through targeting of the c-MYC G-quadruplex. Thus, caution should be used in assigning the effects of G-quadruplex-interactive compounds that lower c-MYC to direct targeting of these promoter elements unless this assay, or similar ones, demonstrates direct targeting of the G-quadruplex in cells. © 2012 American Chemical Society.

Hurley, L., Dexheimer, T. S., Sun, D., & Hurley, L. -. (2006). Deconvoluting the structural and drug-recognition complexity of the G-quadruplex-forming region upstream of the bcl-2 P1 promoter. Journal of the American Chemical Society, 128(16).

The human bcl-2 gene contains a GC-rich region upstream of the P1 promoter that has been shown to be critically involved in the regulation of bcl-2 gene expression. We have demonstrated that the guanine-rich strand of the DNA in this region can form any one of three distinct intramolecular G-quadruplex structures. Mutation and deletion analysis permitted isolation and identification of three overlapping DNA sequences within this element that formed the three individual G-quadruplexes. Each of these was characterized using nondenaturing gel analysis, DMS footprinting, and circular dichroism. The central G-quadruplex, which is the most stable, forms a mixed parallel/antiparallel structure consisting of three tetrads connected by loops of one, seven, and three bases. Three different G-quadruplex-interactive agents were found to further stabilize these structures, with individual selectivity toward one or more of these G-quadruplexes. Collectively, these results suggest that the multiple G-quadruplexes identified in the promoter region of the bcl-2 gene are likely to play a similar role to the G-quadruplexes in the c-myc promoter in that their formation could serve to modulate gene transcription. Last, we demonstrate that the complexity of the G-quadruplexes in the bcl-2 promoter extends beyond the ability to form any one of three separate G-quadruplexes to each having the capacity to form either three or six different loop isomers. These results are discussed in relation to the biological significance of this G-quadruplex-forming element in modulation of bcl-2 gene expression and the inherent complexity of the system where different G-quadruplexes and loop isomers are possible.

Lokey, R. S., Kwok, Y., Guelev, V., Pursell, C. J., Hurley, L. H., & Iverson, B. L. (1997). A new class of polyintercalating molecules. Journal of the American Chemical Society, 119(31), 7202-7210.

Abstract:

We have synthesized a series of polyintercalating compounds, including the first known tetraintercalator, based on the 1,4,5,8-naphthalenetetracarboxylic diimide chromophore. The chromophores are attached in a head-to-tail arrangement by peptide linkers and are synthesized by standard solid phase peptide synthesis methods. We report evidence, based on UV-visible spectroscopy and viscometry, that the compounds are fully intercalated upon binding to double-stranded DNA. Using DNAse I footprinting experiments, the bisintercalator 2 was found to bind to DNA in a cooperative manner. The footprinting results as well as association and dissociation kinetics data reveal that the compounds exhibit a tremendous preference for GC over AT sequences. A mode of binding is proposed in which the compounds intercalate completely from the major groove, and not in a threading manner as may be suggested by their structures. A kinetic scheme is proposed that takes into account the observed cooperativity and fits the data for the dissociations of the polyintercalators from poly(dAdT), although a similar scheme could not adequately model their dissociations from poly(dGdC) or from calf thymus DNA.