Nathan J Cherrington

Nathan J Cherrington

Professor, Pharmacology and Toxicology
Associate Dean, Research and Graduate Studies - College of Pharmacy
Director, Southwest Environmental Health Science Center
Professor, Public Health
Professor, Clinical Translational Sciences
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-0219

Research Interest

Numerous drug-induced and environmental exposure-related toxicities are the result of inter-individual variation in the ADME processes of absorption, distribution, metabolism and elimination that control the fate of these compounds from the body. Alterations in these processes provide the mechanistic basis for individual variability in response to drugs and environmental exposures. A common perception is that variability in response is due to genetic polymorphisms within the drug metabolizing enzyme and transporter genes. While there are numerous examples of these differences that play a major role in the susceptibility of genetic subpopulations for specific toxicities, the potential for transient phenotypic conversion due to temporary environmental changes, such as inflammation and disease, are often overlooked.Due to the ensuing liver damage caused by the progressive stages of NAFLD, gene expression patterns can change dramatically resulting in a phenoconversion resembling genetic polymorphisms. Because the liver plays such a key role in the metabolism and disposition of xenobiotics, this temporary phenoconversion could lead to the inability of patients to properly metabolize and excrete drugs and environmental toxicants, increasing the risk of some adverse drug reactions and environmental toxicities.

Publications

Dzierlenga, A. L., Clarke, J. D., Klein, D. M., Anumol, T., Snyder, S. A., Li, H., & Cherrington, N. J. (2016). Biliary Elimination of Pemetrexed Is Dependent on Mrp2 in Rats: Potential Mechanism of Variable Response in Nonalcoholic Steatohepatitis. The Journal of pharmacology and experimental therapeutics, 358(2), 246-53.

Hepatic multidrug resistance-associated protein 2 (MRP2) provides the biliary elimination pathway for many xenobiotics. Disruption of this pathway contributes to retention of these compounds and may ultimately lead to adverse drug reactions. MRP2 mislocalization from the canalicular membrane has been observed in nonalcoholic steatohepatitis (NASH), the late stage of nonalcoholic fatty liver disease, which is characterized by fat accumulation, oxidative stress, inflammation, and fibrosis. MRP2/Mrp2 mislocalization is observed in both human NASH and the rodent methionine and choline-deficient (MCD) diet model, but the extent to which it impacts overall transport capacity of MRP2 is unknown. Pemetrexed is an antifolate chemotherapeutic indicated for non-small cell lung cancer, yet its hepatobiliary elimination pathway has yet to be determined. The purpose of this study was to quantify the loss of Mrp2 function in NASH using an obligate Mrp2 transport substrate. To determine whether pemetrexed is an obligate Mrp2 substrate, its cumulative biliary elimination was compared between wild-type and Mrp2(-/-) rats. No pemetrexed was detected in the bile of Mrp2(-/-) rats, indicating pemetrexed is completely reliant on Mrp2 function for biliary elimination. Comparing the biliary elimination of pemetrexed between MCD and control animals identified a transporter-dependent decrease in biliary excretion of 60% in NASH. This study identifies Mrp2 as the exclusive biliary elimination mechanism for pemetrexed, making it a useful in vivo probe substrate for Mrp2 function, and quantifying the loss of function in NASH. This mechanistic feature may provide useful insight into the impact of NASH on interindividual variability in response to pemetrexed.

Clarke, J. D., Sharapova, T., Lake, A. D., Blomme, E., Maher, J., & Cherrington, N. J. (2013). Circulating microRNA 122 in the methionine- and choline-deficient mouse model of non-alcoholic steatohepatitis. Journal of Applied Toxicology.

Abstract:

Non-alcoholic steatohepatitis (NASH) is a progressive form of non-alcoholic fatty liver disease (NAFLD) and is a major cause of liver cirrhosis and hepatic failure. The methionine choline-deficient diet (MCD) is a frequently used hepatotoxicity animal model of NASH that induces hepatic transaminase (ALT, AST) elevations and hepatobiliary histological changes similar to those observed in human NASH. Liver-specific microRNA-122 (miR-122) has been shown as a key regulator of cholesterol and fatty acid metabolism in adult liver, and has recently been proposed as a sensitive and specific circulating biomarker of hepatic injury. The purpose of this study was to assess miR-122 serum levels in mice receiving an MCD diet for 0, 3, 7, 14, 28 and 56 days and compare the performance vs. routine clinical chemistry when benchmarked against the histopathological liver findings. MiR-122 levels were quantified in serum using RT-qPCR. Both miR-122 and ALT/AST levels were significantly elevated in serum at all timepoints. MiR-122 levels increased on average by 40-fold after 3 days of initiating the MCD diet, whereas ALT and AST changes were 4.8- and 3.3-fold, respectively. In general, miR-122 levels remained elevated across all time points, whereas the ALT/AST increases were less robust but correlated with the progressive severity of NASH as assessed by histopathology. In conclusion, serum levels of miR-122 can potentially be used as a sensitive biomarker for the early detection of hepatotoxicity and can aid in monitoring the extent of NAFLD-associated liver injury in mouse efficacy models. © 2013 John Wiley & Sons, Ltd.

Cherrington, N., Clarke, J. D., & Cherrington, N. J. (2012). Genetics or environment in drug transport: the case of organic anion transporting polypeptides and adverse drug reactions. Expert opinion on drug metabolism & toxicology, 8(3).

Organic anion transporting polypeptide (OATP) uptake transporters are important for the disposition of many drugs and perturbed OATP activity can contribute to adverse drug reactions (ADRs). It is well documented that both genetic and environmental factors can alter OATP expression and activity. Genetic factors include single nucleotide polymorphisms (SNPs) that change OATP activity and epigenetic regulation that modify OATP expression levels. SNPs in OATPs contribute to ADRs. Environmental factors include the pharmacological context of drug-drug interactions and the physiological context of liver diseases. Liver diseases such as non-alcoholic fatty liver disease, cholestasis and hepatocellular carcinoma change the expression of multiple OATP isoforms. The role of liver diseases in the occurrence of ADRs is unknown.

Lickteig, A. J., Slitt, A. L., Arkan, M. C., Karin, M., & Cherrington, N. J. (2007). Differential regulation of hepatic transporters in the absence of tumor necrosis factor-α, interleukin-1β, interleukin-6, and nuclear factor-κB in two models of cholestasis. Drug Metabolism and Disposition, 35(3), 402-409.

PMID: 17151194;Abstract:

Hepatic transporters are responsible for uptake and efflux of bile acids and xenobiotics as an essential aspect of liver function. When normal vectorial transport of bile acids by the apical uptake and canalicular excretion transporters is disrupted, cholestasis ensues, leading to accumulation of toxic bile constituents and considerable hepatocellular damage. The purpose of this study was to assess the role of cytokines and nuclear factor-κB (NF-κB) in the transcriptional regulation of transporters in two models of cholestasis, lipopolysaccharide (LPS) administration and bile duct ligation (BDL). In wild-type (WT) and knockout mouse strains lacking tumor necrosis factor (TNF) receptor-1, interleukin (IL)-1 receptor I, IL-6, or inhibitor of κB (IκB) kinase β, transporter mRNA levels in liver were determined using branched DNA signal amplification 16 h after LPS administration or 3 days after BDL. In WT mice, LPS administration tended to decrease mRNA levels of organic anion-transporting polypeptide (Oatp) 2, Na +-taurocholate cotransporting polypeptide (Ntcp), Oatp1, Oatp4, bile salt excretory protein (Bsep), multidrug resistance-associated protein (Mrp) 2, and Mrp6 compared with saline treatment, whereas it increased Mrp1, 3, and 5 levels. Similar changes were observed in each knockout strain after LPS administration. Conversely, BDL decreased only Oatp1 expression in WT mice, meanwhile increasing expression of Mrp1, 3, and 5 and Oatp2 expression in both WT and knockout strains. Because the transcriptional effects of BDL- and LPS-induced cholestasis reflect dissimilarity in hepatic transporter regulation, we conclude that these disparities are not due to the individual activity of TNF-α, IL-1, IL-6, or NF-κB but to the differences in the mechanism of cholestasis. Copyright © 2007 by The American Society for Pharmacology and Experimental Therapeutics.

Hardwick, R. N., Clarke, J. D., Lake, A. D., Canet, M. J., Anumol, T., Street, S. M., Merrell, M. D., Goedken, M. J., Snyder, S. A., & Cherrington, N. J. (2014). Increased susceptibility to methotrexate-induced toxicity in nonalcoholic steatohepatitis. Toxicological sciences : an official journal of the Society of Toxicology, 142(1), 45-55.

Hepatic drug metabolizing enzymes and transporters play a crucial role in determining the fate of drugs, and alterations in liver function can place individuals at greater risk for adverse drug reactions (ADRs). We have shown that nonalcoholic steatohepatitis (NASH) leads to changes in the expression and localization of enzymes and transporters responsible for the disposition of numerous drugs. The purpose of this study was to determine the effect of NASH on methotrexate (MTX) disposition and the resulting toxicity profile. Sprague Dawley rats were fed either a control or methionine-choline-deficient diet for 8 weeks to induce NASH, then administered a single ip vehicle, 10, 40, or 100 mg/kg MTX injection followed by blood, urine, and feces collection over 96 h with terminal tissue collection. At the onset of dosing, Abcc1-4, Abcb1, and Abcg2 were elevated in NASH livers, whereas Abcc2 and Abcb1 were not properly localized to the membrane, similar to that previously observed in human NASH. NASH rodents receiving 40-100 mg/kg MTX exhibited hepatocellular damage followed by initiation of repair, whereas damage was absent in controls. NASH rodents receiving 100 mg/kg MTX exhibited slightly greater renal toxicity, indicating multiple organ toxicity, despite the majority of the dose being excreted by 6 h. Intestinal toxicity in NASH however, was strikingly less severe than controls, and coincided with reduced fecal MTX excretion. Because MTX-induced gastrointestinal toxicity limits the dose escalation necessary for cancer remission, these data suggest a greater risk for life-threatening MTX-induced hepatic and renal toxicity in NASH in the absence of overt gastrointestinal toxicity.