Bernard W Futscher

Bernard W Futscher

Assistant Research Scientist, Cancer Center Division
Associate Professor, BIO5 Institute
Investigator, Center for Toxicology
Professor, Pharmacology and Toxicology
Professor, Cancer Biology - GIDP
Primary Department
Department Affiliations
Contact
(520) 626-4646

Work Summary

Bernard Futscher's lab is studying the molecular origins of human cancer. Understanding epigenetic dysfunction in human cancer has been Dr. Futscher's primary research focus since establishing his own independent laboratory. This epigenetic research has moved into the area of noncoding RNAs and their potential role in cancer cell immortality.

Research Interest

Bernard Futscher, PhD, and his lab focus on the molecular origins of human cancer. More specifically, the lab group has 3 inter-related research objectives based on the underlying concept that developing an in-depth understanding of epigenetic mechanismsresponsible for governing cell fate will allow for the development of more effective strategies for the prevention, treatment, and cure of cancer. First, they wish to identify which epigenetic mechanisms participate in the transcriptional control of genes important to growth and differentiation. Second, they seek to determine how these epigenetic mechanisms, and therefore epigenetic homeostasis, become compromised during oncogenesis. Third, using a new and more complete understanding of epigenetic control of the genome, Dr. Futscher and his team are developing rational new therapeutic strategies that seek to repair these defects in the cancer cell and transcriptionally reprogram the malignant cancer cell to a benign state. To reach their objectives, a variety of in vitro models of cancer have been developed to address emerging hypotheses that are inferred from the literature in basic and clinical science as well as our own data. Results from these in vitro studies are then translated to the clinical situation to determine their meaning in the actual clinical face of the disease. Similarly, they attempt to take information obtained from the genome-wide assessment of clinical specimens in order to help guide our thinking and develop new hypotheses that can be tested experimentally in our in vitro models.

Publications

Domann, F. E., Rice, J. C., Hendrix, M. J., & Futscher, B. W. (2000). Epigenetic silencing of maspin gene expression in human breast cancers. International Journal of Cancer, 85(6), 805-810.

PMID: 10709100;Abstract:

Maspin is a tumor suppressor whose expression is lost in many advanced breast cancers. Maspin has been shown to inhibit cell motility, invasion and metastasis; however, its precise role in normal mammary epithelium remains to be elucidated. Although expression of maspin mRNA is low or absent in most human breast cancer cells, the maspin gene is rarely re-arranged or deleted. We hypothesized that aberrant cytosine methylation and chromatin condensation of the maspin promoter participates in the silencing of maspin expression during neoplastic progression. To test this hypothesis, we compared cultured normal human mammary epithelial cells (HMECs) to 9 cultured human breast cancer cell lines. HMECs expressed maspin mRNA and displayed a completely non-methylated maspin gene promoter with an open chromatin structure. In contrast, 7 of 9 breast cancer cell lines had no detectable maspin expression and 6 of these 7 maspin-negative breast cancer cell lines also displayed an aberrant pattern of cytosine methylation of the maspin promoter. Interestingly, the maspin promoter was completely methylated in maspin-negative normal peripheral blood lymphocytes. This indicates that the maspin promoter is not a functional CpG island and that cytosine methylation of this region may contribute to normal tissue- restricted gene expression. Chromatin accessibility studies with MCF-7 cells, which lack maspin expression and have a methylated maspin promoter, showed a closed chromatin structure compared with HMECs. Moreover, maspin gene expression could be re-activated in MCF-7 cells by treatment with 5- aza-2'-deoxycytidine, a DNA demethylating agent. Thus, aberrant cytosine methylation and heterochromatinization of the maspin promoter may silence maspin gene expression, thereby contributing to the progression of human mammary cancer. (C) 2000 Wiley-Liss, Inc.

Jensen, T. J., Novak, P., Wnek, S. M., Gandolfi, A. J., & Futscher, B. W. (2009). Arsenicals produce stable progressive changes in DNA methylation patterns that are linked to malignant transformation of immortalized urothelial cells. Toxicology and Applied Pharmacology, 241(2), 221-229.

PMID: 19716837;PMCID: PMC2783766;Abstract:

Aberrant DNA methylation participates in carcinogenesis and is a molecular hallmark of a tumor cell. Tumor cells generally exhibit a redistribution of DNA methylation resulting in global hypomethylation with regional hypermethylation; however, the speed in which these changes emerge has not been fully elucidated and may depend on the temporal location of the cell in the path from normal, finite lifespan to malignant transformation. We used a model of arsenical-induced malignant transformation of immortalized human urothelial cells and DNA methylation microarrays to examine the extent and temporal nature of changes in DNA methylation that occur during the transition from immortal to malignantly transformed. Our data presented herein suggest that during arsenical-induced malignant transformation, aberrant DNA methylation occurs non-randomly, progresses gradually at hundreds of gene promoters, and alters expression of the associated gene, and these changes are coincident with the acquisition of malignant properties, such as anchorage independent growth and tumor formation in immunocompromised mice. The DNA methylation changes appear stable, since malignantly transformed cells removed from the transforming arsenical exhibited no reversion in DNA methylation levels, associated gene expression, or malignant phenotype. These data suggest that arsenicals act as epimutagens and directly link their ability to induce malignant transformation to their actions on the epigenome. © 2009 Elsevier Inc. All rights reserved.

Duan, H., Zhang, H. J., Yang, J., Oberley, L. W., Futscher, B. W., & Domann, F. E. (2003). MnSOD Up-Regulates Maspin Tumor Suppressor Gene Expression in Human Breast and Prostate Cancer Cells. Antioxidants and Redox Signaling, 5(5), 677-688.

PMID: 14580325;Abstract:

Manganese superoxide dismutase (MnSOD) is an antioxidant enzyme with tumor suppressor activity; however, the molecular mechanisms of MnSOD antitumor effects remain unclear. We hypothesized that MnSOD activity in cancer cells might cause downstream changes in the expression of other tumor suppressor genes. To determine whether maspin, a tumor suppressor gene that inhibits breast cancer cell invasion and metastasis, might be a target of MnSOD, we forced MnSOD expression in several human breast and prostate cancer cell lines by adenovirus-mediated gene transfer and measured maspin mRNA expression. Forced expression of MnSOD caused maspin mRNA to accumulate in a dose-dependent manner in both human breast and prostate cancer cells. Normal p53 was not necessary to mediate the effect of MnSOD because MnSOD up-regulated maspin in cells that harbor wild-type p53 and in cells that harbor mutant p53. Moreover, the effects of MnSOD on maspin were not due to demethylation of the maspin promoter. Analyses of maspin promoter activity, transcriptional run-on, and mRNA stability showed that maspin mRNA stability was the major mechanism for maspin up-regulation by MnSOD. Our findings identify a mechanism underlying MnSOD antitumor effects and provide evidence to support MnSOD as a genetic therapy in the treatment of human breast and prostate cancers.

Futscher, B. W., Pieper, R. O., Dalton, W. S., & Erickson, L. C. (1992). Gene-specific DNA interstrand cross-links produced by nitrogen mustard in the human tumor cell line Colo320HSR.. Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research, 3(4), 217-223.

PMID: 1515367;Abstract:

Genomic and gene-specific DNA interstrand cross-links produced by nitrogen mustard (HN2) were measured in the human tumor cell line Colo320HSR. Following exposures that produced greater than or equal to 1 log cell kill, it was found that HN2-induced DNA interstrand cross-links were produced and processed in a heterogeneous fashion within the genome. Cross-links were detected in the amplified, overexpressed c-myc oncogene, whereas in the weakly expressed N-ras gene and the nontranscribed, high copy number alpha-satellite sequence (of chromosome 20), cross-links were not detected. The cross-links in the c-myc oncogene disappeared more rapidly than total genomic cross-links. These results suggest that HN2-induced DNA interstrand cross-links are produced and processed in the genome in a nonrandom fashion.

Junk, D. J., Vrba, L., Watts, G. S., Oshiro, M. M., Martinez, J. D., & Futscher, B. W. (2008). Different mutant/wild-type p53 combinations cause a spectrum of increased invasive potential in nonmalignant immortalized human mammary epithelial cells. Neoplasia, 10(5), 450-461.

PMID: 18472962;PMCID: PMC2373910;Abstract:

Aberrations of p53 occur in most, if not all, human cancers. In breast cancer, p53 mutation is the most common genetic defect related to a single gene. Immortalized human mammary epithelial cells resemble the earliest forms of aberrant breast tissue growth but do not express many malignancy-associated phenotypes. We created a model of human mammary epithelial tumorigenesis by infecting hTERT-HME1 immortalized human mammary epithelial cells expressing wild-type p53 with four different mutant p53 constructs to determine the role of p53 mutation on the evolution of tumor phenotypes. We demonstrate that different mutant/wild-type p53 heterozygous models generate loss of function, dominant negative activity, and a spectrum of gain of function activities that induce varying degrees of invasive potential. We suggest that this model can be used to elucidate changes that occur in early stages of human mammary epithelial tumorigenesis. These changes may constitute novel biomarkers or reveal novel treatment modalities that could inhibit progression from primary to metastatic breast disease. Copyright © 2008 Neoplasia Press, Inc. All rights reserved.