Xianchun Li

Xianchun Li

Professor, Entomology
Professor, Entomology / Insect Science - GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-1749

Work Summary

Xianchun Li's research aims to use genetics to shed light on the defense signaling of plants and the counterdefense of herbivorous insects, which may result in the design of new insecticides for crops like corn, in defense against the corn earworm. Additionally, Dr. Li's research is to define, globally, the regulatory triangle between nuclear receptors (NRs), their ligands, and cytochrome P450s (P450s) in Drosophila melanogaster, and to investigate the molecular mechanisms of Bt and conventional insecticide resistance.

Research Interest

Xianchun Li, PhD, is interested in understanding the physiological, biochemical, molecular and evolutionary bases of fundamental processes in the life history of insects such as embryonic polarity, metamorphosis, developmental commitment, host usage and environmental adaptation. One focus of his research is to elucidate the reciprocal signaling interactions between plants and insects, and the resulted on-going defense (in the case of plants) / counterdefense (in the case of herbivorous insects) phenotypic arm race over ecological time scale, with emphasis on the genetic machinery that percepts and transduces the reciprocal cues into genome and regulate defense / counterdefense phenotypes. Working systems include Helicoverpa zea, the corn earworm, a polyphagous noctuide of economic importance, and Drosophila melanogaster, the fruit fly, a model organism. State of arts and traditional techniques are combining to identify the cues and to uncover the signaling transduction cascade that links environmental cues, gene expression and the resulted defense/counterdefense phenotypes. This research may lead to characterization of genes for designing new insecticides and/or genetically modifying crops. The second focus of Dr. Li’s research is to define, globally, the regulatory triangle between nuclear receptors (NRs), their ligands, and cytochrome P450s (P450s) in Drosophila melanogaster. Nuclear receptors (NRs) constitute a transcription factor superfamily that has evolved to sense and bind endogenous (e.g., hormones) and/or exogenous (e.g., naturally-occurring or synthetic xenobiotics) signal compounds, resulting in differential expression of particular target genes, which underlies a range of fundamental biological processes, including growth, development, reproduction, behavior, host usage, and environmental adaptation. Many of those cue chemicals, namely NR ligands, are synthesized and/or metabolized by members of the P450s gene superfamily, whose expression may be regulated by certain NRs. Bioinformatics analyses as well as systematic functional genomic techniques such as microarray, X-ChIP, mutation and ectopic expression will be combined to define the genome-wide regulatory interaction loops between NRs and P450s as well as to assign, at least partially, functions of individual NRs and P450s in the life history of fruit fly. Given the evolutionary conservations of homologous NRs and P450s between vertebrates and invertebrates, the results obtained in this project are expected to provide insights into the reciprocal regulatory interactions between NRs and P450s in other animals including humans as well as to provide great insights into new avenue for human NR ligand identification and NR-related drug design. The third focus of his research is to investigate the molecular mechanisms of Bt and conventional insecticide resistance, which is a major threat in current IPM system. In collaboration with Dr. Bruce Tabashnik, Timothy Dennehy, and Yves Carriere in our Department, Dr. Li is going to compare Bt toxin binding affinity and other defects of natural (s, r1, r2, r3) and artificial mutant PBW (Pink Bollworm) cadherin proteins and thus define the key functional domains of PBW cadherin.

Publications

Brévault, T., Heuberger, S., Zhang, M., Ellers-Kirk, C., Ni, X., Masson, L., Li, X. -., Tabashnik, B. E., & Carrière, Y. (2013). Potential shortfall of pyramided Bt cotton for resistance management. Proc. Natl. Acad. Sci. USA., 110, 5806-5811.
Li, Y., Dennehy, T. J., Li, X., & Wigert, M. E. (2000). Susceptibility of Arizona whiteflies to chloronicotinyl insecticides and IGRS: New developments in the 1999 season. 2000 Proceedings Cotton Conferences Volume 2, 1325-1330.

Abstract:

Whiteflies are serious pests of cotton, melons, and winter vegetables in Arizona's low deserts. Successful management of whiteflies requires an integrated approach, a critical element of which is routine pest monitoring. In this paper we report findings of our 1999 investigations of resistance of Arizona whiteflies to insect growth regulators (IGRs) and chloronicotinyl insecticides. Whiteflies collected from cotton fields, melon fields and greenhouses were tested for susceptibility to imidacloprid (Admire®/Provado®), and two other chloronicotinyl insecticides, acetamiprid and thiamethoxam, and to two insect growth regulators (IGRs), buprofezin (Applaud®) and pyriproxyfen (Knack®). Contrasts of 1998 and 1999 results indicated increased susceptibilities, on average, to both imidacloprid and buprofezin of whiteflies collected from cotton. A cropping system study showed that whiteflies collected from spring melons had significantly lower susceptibility to imidacloprid than those collected from cotton or fall melons. The opposite was found for pyriproxyfen, to which whiteflies from cotton and fall melons had lower susceptibility than those from spring melons. As in 1998, whiteflies with reduced susceptibility to imidacloprid continue to be found in certain locations, particularly in spring melon fields and greenhouses. Results of our laboratory bioassays on susceptibility of Arizona whiteflies to chloronicotinyl insecticides provided evidence of a low order cross-resistance between imidacloprid, acetamiprid and thiamethoxam. Monitoring in 1999 provided the first evidence of reduced susceptibility of Arizona whiteflies to pyriproxyfen.

Ni, X., Wilson, J. P., Toews, M. D., Buntin, G. D., Lee, R. D., Li, X., Lei, Z., He, K., Xu, W., Li, X., Huffaker, A., & Schmelz, E. A. (2014). Evaluation of spatial and temporal patterns of insect damage and aflatoxin level in the pre-harvest corn fields to improve management tactics. Insect science, 21(5), 572-83.

Spatial and temporal patterns of insect damage in relation to aflatoxin contamination in a corn field with plants of uniform genetic background are not well understood. After previous examination of spatial patterns of insect damage and aflatoxin in pre-harvest corn fields, we further examined both spatial and temporal patterns of cob- and kernel-feeding insect damage, and aflatoxin level with two samplings at pre-harvest in 2008 and 2009. The feeding damage by each of the ear/kernel-feeding insects (i.e., corn earworm/fall armyworm damage on the silk/cob, and discoloration of corn kernels by stink bugs) and maize weevil population were assessed at each grid point with five ears. Sampling data showed a field edge effect in both insect damage and aflatoxin contamination in both years. Maize weevils tended toward an aggregated distribution more frequently than either corn earworm or stink bug damage in both years. The frequency of detecting aggregated distribution for aflatoxin level was less than any of the insect damage assessments. Stink bug damage and maize weevil number were more closely associated with aflatoxin level than was corn earworm damage. In addition, the indices of spatial-temporal association (χ) demonstrated that the number of maize weevils was associated between the first (4 weeks pre-harvest) and second (1 week pre-harvest) samplings in both years on all fields. In contrast, corn earworm damage between the first and second samplings from the field on the Belflower Farm, and aflatoxin level and corn earworm damage from the field on the Lang Farm were dissociated in 2009.

Li, R. T., Ning, C., Huang, L. Q., Dong, J. F., Li, X., & Wang, C. Z. (2017). Expressional divergences of two desaturase genes determine the opposite ratios of two sex pheromone components in Helicoverpa armigera and Helicoverpa assulta. Insect biochemistry and molecular biology, 90, 90-100.

The sympatric closely related species Helicoverpa armigera and Helicoverpa assulta use 97:3 and 7:93 of (Z)-11-hexadecenal and (Z)-9-hexadecenal, respectively, as their sex pheromone to find/locate correct sex mates. Moreover, (Z)-11-hexadecenyl alcohol and (Z)-9-hexadecenyl alcohol are more abundant in the pheromone gland of H. assulta than in that of H. armigera. To clarify the molecular basis of these differences, we sequenced the pheromone gland transcriptomes of the two species and compared the expression patterns of the candidate enzyme genes involved in the pheromone biosynthetic pathways by FPKM values and quantitative RT-PCR analysis. We found that the desaturase gene LPAQ expressed about 70 times higher in H. armigera than in H. assulta, whereas another desaturase gene NPVE expressed about 60 times higher in H. assulta than in H. armigera. We also observed significantly higher expression of the fatty acyl reductase (FAR) gene FAR1 and the aldehyde reductase (AR) gene AR3 in H. assulta than in H. armigera. Examination of the pheromone glands of the backcross offspring of their hybrids to H. assulta showed a positive linear correlation between the expression level of LPAQ and the amount of Z11-16:Ald and between the expression level of NPVE and the amount of Z9-16:Ald in the pheromone glands. Taken together, these data demonstrate that the expressional divergences of LPAQ and NPVE determine the opposite sex pheromone component ratios in the two species and the divergent expression of FAR1 and AR3 may account for the greater accumulation of alcohols in the pheromone gland of H. assulta.

Wang, X., Bai, S., Li, X., Yin, X., & Li, X. (2015). THE ENDOPARASITOID Campoletis chlorideae INDUCES A HEMOLYTIC FACTOR IN THE HERBIVOROUS INSECT Helicoverpa armigera. Archives of insect biochemistry and physiology, 90(1), 14-27.

Although lysis of invading organisms is a major innate form of immunity used by invertebrates, it remains unclear whether herbivorous insects have hemolysin or not. To address this general question, we tested the hemolytic (HL) activity of the hemolymph and tissue extracts from various stages of the polyphagous insect Helicoverpa armigera (Hübner) against the erythrocytes from chicken, duck, and rabbit. An HL activity was identified in the hemolymph of H. armigera larvae. Further studies demonstrated that the HL activity is proteinaceous as it was precipitable by deproteinizing agents. Hemolysins were found in Helicoverpa egg, larva, pupa, and adult, but the activity was higher in feeding larvae than in molting or newly molted larvae. Hemolysins were distributed among a variety of larval tissues including salivary gland, fat body, epidermis, midgut, or testes, but the highest activity was found in salivary gland and fat body. Relative to nonparasitized larvae, parasitization of H. armigera larvae by the endoparasitoid Campoletis chlorideae Uchida induced a 3.4-fold increase in the HL activity in the plasma of parasitized host at day two postparasitization. The present study shows the presence of a parasitoid inducible HL factor in the parasitized insect. The HL activity increased significantly in H. armigera larvae at 12 and 24 h postinjection with Escherichia coli. We infer the HL factor(s) is inducible or due to de novo synthesis, which means that the HL factor(s) is associated with insect immune response by inhibiting or clearance of invading organisms.