Anna R Dornhaus

Anna R Dornhaus

Professor, Ecology and Evolutionary Biology
Professor, Entomology / Insect Science - GIDP
Professor, Psychology
Professor, Neuroscience
Professor, Neuroscience - GIDP
Professor, Cognitive Science - GIDP
Professor, BIO5 Institute
Primary Department
Contact
(520) 626-8586

Research Interest

Dr. Anna Dornhaus Ph.D., is Associate Professor of Ecology and Evolutionary Biology, Physiology and the BIO5 Institute. Dr. Dornhaus received her B.S. and Ph.D. in Zoology at the University of Würzburg and is currently an Associate Professor of Ecology & Evolutionary Biology at the University of Arizona. She specializes in the organization of groups as well as how collective behaviors emerge from the actions and interactions of individuals. Her model systems seek data in social insect colonies (bumble bees, honey bees and ants) in the laboratory and in the field, as well as using mathematical and individual-based modeling approaches. Dr. Dornhaus investigates mechanisms of coordination in foraging, collective decision-making, task allocation and division of labor. Dr. Dornhaus’ recent work has included the role of communication in the allocation of foragers to food sources; the evolution of different recruitment systems in different species of bees, and how ecology shapes these recruitment systems; house hunting strategies in ants; speed-accuracy trade offs in decision-making; and whether different group sizes necessitate different organizational strategies.

Publications

Dornhaus, A., Collins, E. J., Dechaume-Moncharmont, F., Houston, A. I., Franks, N. R., & McNamara, J. M. (2006). Paying for information: Partial loads in central place foragers. Behavioral Ecology and Sociobiology, 61(1), 151-161.

Abstract:

Information about food sources can be crucial to the success of a foraging animal. We predict that this will influence foraging decisions by group-living foragers, which may sacrifice short-term foraging efficiency to collect information more frequently. This result emerges from a model of a central-place forager that can potentially receive information on newly available superior food sources at the central place. Such foragers are expected to return early from food sources, even with just partial loads, if information about the presence of sufficiently valuable food sources is likely to become available. Returning with an incomplete load implies that the forager is at that point not achieving the maximum possible food delivery rate. However, such partial loading can be more than compensated for by an earlier exploitation of a superior food source. Our model does not assume cooperative foraging and could thus be used to investigate this effect for any social central-place forager. We illustrate the approach using numerical calculations for honeybees and leafcutter ants, which do forage cooperatively. For these examples, however, our results indicate that reducing load confers minimal benefits in terms of receiving information. Moreover, the hypothesis that foragers reduce load to give information more quickly (rather than to receive it) fits empirical data from social insects better. Thus, we can conclude that in these two cases of social-insect foraging, efficient distribution of information by successful foragers may be more important than efficient collection of information by unsuccessful ones. © 2006 Springer-Verlag.

Dornhaus, A., & Franks, N. R. (2006). Colony size affects collective decision-making in the ant Temnothorax albipennis. Insectes Sociaux, 53(4), 420-427.

Abstract:

Social insects are well-known for their ability to achieve robust collective behaviours even when individuals have limited information. It is often assumed that such behaviours rely on very large group sizes, but many insect colonies start out with only a few workers. Here we investigate the influence of colony size on collective decision-making in the house-hunting of the ant Temnothorax albipennis. In experiments where colony size was manipulated by splitting colonies, we show that worker number has an influence on the speed with which colonies discover new nest sites, but not on the time needed to make a decision (achieve a quorum threshold) or total emigration time. This occurred because split colonies adopted a lower quorum threshold, in fact they adopted the same threshold in proportion to their size as full-size colonies. This indicates that ants may be measuring relative quorum, i.e. population in the new nest relative to that of the old nest, rather than the absolute number. Experimentally reduced colonies also seemed to gain more from experience through repeated emigrations, as they could then reduce nest discovery times to those of larger colonies. In colonies of different sizes collected from the field, total emigration time was also not correlated with colony size. However, quorum threshold was not correlated with colony size, meaning that individuals in larger colonies adopted relatively lower quorum thresholds. Since this is a different result to that from size-manipulated colonies, it strongly suggests that the differences between natural small and large colonies were not caused by worker number alone. Individual ants may have adjusted their behaviour to their colony's size, or other factors may correlate with colony size in the field. Our study thus shows the importance of experimentally manipulating colony size if the effect of worker number on the emergence of collective behaviour is to be studied. © Birkhäuser Verlag, 2006.

Franks, N. R., Hooper, J. W., Gumn, M., Bridger, T. H., Marshall, J. A., Gross, R., & Dornhaus, A. R. (2007). Moving targets: collective decisions and flexible choices in house-hunting ants. Swarm Intelligence, 1, 81-94.
Jandt, J. M., & Dornhaus, A. (2014). Bumblebee response thresholds and body size: does worker diversity increase colony performance?. Animal Behaviour, 87, 97-106.

Abstract:

Although models of colony organization in social insects often rely on the assumption that within-group variation increases group performance, empirical support for this is mostly confined to studies of genetic variation. However, workers in ant or bee colonies often vary in behaviour and morphology even when genetic variation is low. Bumblebees provide a unique opportunity to explore the consequences of such variation: colonies have a wide range of worker body sizes compared to other social bee species, and workers also vary in response thresholds (i.e. stimulus levels at which workers respond by performing a task), in spite of queens being singly mated (and thus, low genetic variation). Here we test how body size and response threshold diversity affect colony performance in two unrelated in-nest tasks (thermoregulation and undertaking). We manipulated worker diversity using worker removals to restrict threshold or body size variation within the colony. We also quantified the degree of intracolony variation across colonies and related this to colony performance. In general, colonies took longer to cool the nest after bees were removed, but there was no significant effect of treatment on fanning or undertaking success. Furthermore, when intracolony variation was analysed as a continuous variable, we found no effect on colony-level thermoregulation or undertaking performance. Instead, average threshold was a more useful predictor of thermoregulation success, and colonies with a narrower range of size variation had more success at undertaking. These results emphasize the importance of understanding how different types of variation (e.g. behavioural, morphological, etc.) contribute to colony performance. © 2013 The Association for the Study of Animal Behaviour.

Couvillon, M. J., & Dornhaus, A. (2009). Location, location, location: larvae position inside the nest is correlated with adult body size in worker bumble-bees (Bombus impatiens). Proceedings. Biological sciences / The Royal Society, 276(1666), 2411-2418.

Social insects display task-related division of labour. In some species, division of labour is related to differences in body size, and worker caste members display morphological adaptations suited for particular tasks. Bumble-bee workers (Bombus spp.) can vary in mass by eight- to tenfold within a single colony, which previous work has linked to division of labour. However, little is known about the proximate mechanism behind the production of this wide range of size variation within the worker caste. Here, we quantify the larval feeding in Bombus impatiens in different nest zones of increasing distance from the centre. There was a significant difference in the number of feedings per larva across zones, with a significant decrease in feeding rates as one moved outwards from the centre of the nest. Likewise, the diameter of the pupae in the peripheral zones was significantly smaller than that of pupae in the centre. Therefore, we conclude that the differential feeding of larvae within a nest, which leads to the size variation within the worker caste, is based on the location of brood clumps. Our work is consistent with the hypothesis that some larvae are 'forgotten', providing a possible first mechanism for the creation of size polymorphism in B. impatiens.