Anna R Dornhaus
Professor, BIO5 Institute
Professor, Cognitive Science - GIDP
Professor, Ecology and Evolutionary Biology
Professor, Entomology / Insect Science - GIDP
Professor, Neuroscience - GIDP
Professor, Psychology
Professor, Neuroscience
Primary Department
(520) 626-8586
Research Interest
Dr. Anna Dornhaus Ph.D., is Associate Professor of Ecology and Evolutionary Biology, Physiology and the BIO5 Institute. Dr. Dornhaus received her B.S. and Ph.D. in Zoology at the University of Würzburg and is currently an Associate Professor of Ecology & Evolutionary Biology at the University of Arizona. She specializes in the organization of groups as well as how collective behaviors emerge from the actions and interactions of individuals. Her model systems seek data in social insect colonies (bumble bees, honey bees and ants) in the laboratory and in the field, as well as using mathematical and individual-based modeling approaches. Dr. Dornhaus investigates mechanisms of coordination in foraging, collective decision-making, task allocation and division of labor. Dr. Dornhaus’ recent work has included the role of communication in the allocation of foragers to food sources; the evolution of different recruitment systems in different species of bees, and how ecology shapes these recruitment systems; house hunting strategies in ants; speed-accuracy trade offs in decision-making; and whether different group sizes necessitate different organizational strategies.

Publications

Bronstein, J., Lanan, M. C., Dornhaus, A., Jones, E. I., Waser, A., & Bronstein, J. -. (2012). The trail less traveled: individual decision-making and its effect on group behavior. PloS one, 7(10).
BIO5 Collaborators
Judith Bronstein, Anna R Dornhaus

Social insect colonies are complex systems in which the interactions of many individuals lead to colony-level collective behaviors such as foraging. However, the emergent properties of collective behaviors may not necessarily be adaptive. Here, we examine symmetry breaking, an emergent pattern exhibited by some social insects that can lead colonies to focus their foraging effort on only one of several available food patches. Symmetry breaking has been reported to occur in several ant species. However, it is not clear whether it arises as an unavoidable epiphenomenon of pheromone recruitment, or whether it is an adaptive behavior that can be controlled through modification of the individual behavior of workers. In this paper, we used a simulation model to test how symmetry breaking is affected by the degree of non-linearity of recruitment, the specific mechanism used by individuals to choose between patches, patch size, and forager number. The model shows that foraging intensity on different trails becomes increasingly asymmetric as the recruitment response of individuals varies from linear to highly non-linear, supporting the predictions of previous work. Surprisingly, we also found that the direction of the relationship between forager number (i.e., colony size) and asymmetry varied depending on the specific details of the decision rule used by individuals. Limiting the size of the resource produced a damping effect on asymmetry, but only at high forager numbers. Variation in the rule used by individual ants to choose trails is a likely mechanism that could cause variation among the foraging behaviors of species, and is a behavior upon which selection could act.

Lanan, M. C., Dornhaus, A., & Bronstein, J. L. (2011). The function of polydomy: The ant Crematogaster torosa preferentially forms new nests near food sources and fortifies outstations. Behavioral Ecology and Sociobiology, 65(5), 959-968.
BIO5 Collaborators
Judith Bronstein, Anna R Dornhaus

Abstract:

Many ant species are polydomous, forming multiple spatially segregated nests that exchange workers and brood. However, why polydomy occurs is still uncertain. We investigated whether colonies of Crematogaster torosa form new polydomous nests to better exploit temporally stable food resources. Specifically, we tested the effect of food presence or absence and distance on the likelihood that colonies would form a new nest. Because this species also forms little-known structures that house only workers without brood (outstations), we also compared the function of this structure with true nests. Laboratory-reared colonies were connected to a new foraging arena containing potential nest sites with or without food for 4 months. When food was present, most colonies formed polydomous nests nearby and the remainder formed outstations. When food was absent, the behavior of colonies differed significantly, frequently forming outstations but never polydomous nests. Distance had no effect on the type of structure formed, but when food was present, a larger proportion of the workforce moved shorter distances. Workers often fortified the entrances to both structures and used them for storage of dried insect tissue ("jerky"). In an investigation of spatial fidelity, we found that workers on the between-nest trail were associated with the original nest, whereas workers collecting food were more likely to be associated with the new nest or outstation. C. torosa appears to have a flexible colony structure, forming both outstations and polydomous nests. Polydomous nests in this species were associated with foraging and were only formed near food resources. © 2010 Springer-Verlag.

Kulahci, I. G., Dornhaus, A., & Papaj, D. R. (2008). Multimodal signals enhance decision-making in foraging bumble-bees. Proceedings of the Royal Society B: Biological Sciences, 275, 797-802.
Couvillon, M. J., & Dornhaus, A. (2010). Small worker bumble bees (Bombus impatiens) are hardier against starvation than their larger sisters. Insectes Sociaux, 57(2), 193-197.

Abstract:

In bumble bees (Bombus spp.), where workers within the same colony exhibit up to a tenfold difference in mass, labor is divided by body size. Current adaptive explanations for this important life history feature are unsatisfactory. Within the colony, what is the function of the smaller workers? Here, we report on the differential robustness to starvation of small and large worker bumble bees (Bombus impatiens); when nectar is scarce, small workers remain alive significantly longer than larger workers. The presence of small workers, and size variation in general, might act as insurance against times of nectar shortage. These data may provide a novel, adaptive explanation, independent of division of labor, for size polymorphism within the worker caste. © Birkhäuser Verlag, Basel/Switzerland 2009.

Donaldson-Matasci, M. C., DeGrandi-Hoffman, G., & Dornhaus, A. (2013). Bigger is better: Honeybee colonies as distributed information-gathering systems. Animal Behaviour, 85(3), 585-592.

Abstract:

In collectively foraging groups, communication about food resources can play an important role in the organization of the group's activity. For example, the honeybee dance communication system allows colonies to selectively allocate foragers among different floral resources according to their quality. Because larger groups can potentially collect more information than smaller groups, they might benefit more from communication because it allows them to integrate and use that information to coordinate forager activity. Larger groups might also benefit more from communication because it allows them to dominate high-value resources by recruiting large numbers of foragers. By manipulating both colony size and the ability to communicate location information in the dance, we show that larger colonies of honeybees benefit more from communication than do smaller colonies. In fact, colony size and dance communication worked together to improve foraging performance; the estimated net gain per foraging trip was highest in larger colonies with unimpaired communication. These colonies also had the earliest peaks in foraging activity, but not the highest ones. This suggests they may find and recruit to resources more quickly, but not more heavily. The benefits of communication we observed in larger colonies are thus likely a result of more effective information-gathering due to massive parallel search rather than increased competitive ability due to heavy recruitment. © 2013 The Association for the Study of Animal Behaviour.