Shane C Burgess

Shane C Burgess

Dean, Charles-Sander - College of Agriculture and Life Sciences
Vice President, Agriculture - Life and Veterinary Sciences / Cooperative Extension
Professor, Animal and Comparative Biomedical Sciences
Professor, Immunobiology
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 621-7621

Research Interest

Shane C. BurgessVice President for Agriculture, Life and Veterinary Sciences, and Cooperative ExtensionDean, College of Agriculture and Life SciencesInterim Dean, School of Veterinary MedicineDirector, Arizona Experiment StationA native of New Zealand, Dr. Burgess has worked around the world as a practicing veterinarian and scientist. His areas of expertise include cancer biology, virology, proteomics, immunology and bioinformatics.Since 1997 he has 186 refereed publications, trained 37 graduate students and has received nearly $55 million in competitive funding.The first in his extended family to complete college, Dr. Burgess graduated with distinction as a veterinarian in 1989 from Massey University, New Zealand. He has worked in, and managed veterinary clinical practices in Australia and the UK, including horses, farm animals, pets, wild and zoo animals, and emergency medicine and surgery. He did a radiology residency at Murdoch University in Perth in Western Australia, where he co-founded Perth's first emergency veterinary clinic concurrently. He has managed aquaculture facilities in Scotland. He did his PhD in virology, immunology and cancer biology, conferred by Bristol University medical school, UK while working full time outside of the academy between 1995 and 1998. Dr. Burgess volunteered to work in the UK World Reference Laboratory for Exotic Diseases during the 2001 UK foot and mouth disease crisis, where he led the diagnosis reporting office, for the Office of the UK Prime Minister Tony Blair. He was awarded the Institute for Animal Health Director's Award for Service.In 2002, Dr. Burgess joined Mississippi State University’s College of Veterinary Medicine as an assistant professor. He was recruited from Mississippi State as a professor, an associate dean of the college and director of the Institute for Genomics, Biocomputing and Biotechnology to lead the UA College of Agriculture and Life Sciences in July 2011. Under Dr. Burgess’ leadership, the college has a total budget of more than $120M with over 3,400 students and more than 1,800 employees.

Publications

Cogburn, L. A., Porter, T. E., Duclos, M. J., Simon, J., Burgess, S. C., Zhu, J. J., Cheng, H. H., Dodgson, J. B., & Burnside, J. (2007). Functional genomics of the chicken - A model organism. Poultry Science, 86(10), 2059-2094.

PMID: 17878436;Abstract:

Since the sequencing of the genome and the development of high-throughput tools for the exploration of functional elements of the genome, the chicken has reached model organism status. Functional genomics focuses on understanding the function and regulation of genes and gene products on a global or genome-wide scale. Systems biology attempts to integrate functional information derived from multiple high-content data sets into a holistic view of all biological processes within a cell or organism. Generation of a large collection (∼600K) of chicken expressed sequence tags, representing most tissues and developmental stages, has enabled the construction of high-density microarrays for transcriptional profiling. Comprehensive analysis of this large expressed sequence tag collection and a set of ∼20K full-length cDNA sequences indicate that the transcriptome of the chicken represents approximately 20,000 genes. Furthermore, comparative analyses of these sequences have facilitated functional annotation of the genome and the creation of several bioinformatic resources for the chicken. Recently, about 20 papers have been published on transcriptional profiling with DNA microarrays in chicken tissues under various conditions. Proteomics is another powerful high-throughput tool currently used for examining the dynamics of protein expression in chicken tissues and fluids. Computational analyses of the chicken genome are providing new insight into the evolution of gene families in birds and other organisms. Abundant functional genomic resources now support large-scale analyses in the chicken and will facilitate identification of transcriptional mechanisms, gene networks, and metabolic or regulatory pathways that will ultimately determine the phenotype of the bird. New technologies such as marker-assisted selection, transgenics, and RNA interference offer the opportunity to modify the phenotype of the chicken to fit defined production goals. This review focuses on functional genomics in the chicken and provides a road map for large-scale exploration of the chicken genome. ©2007 Poultry Science Association Inc.

Nanduri, B., Lawrence, M. L., Vanguri, S., Pechan, T., & Burgess, S. C. (2009). Proteomic analysis using an unfinished bacterial genome: The effects of sub-minimum inhibitory concentrations of antibiotics on Mannheimia haemolytica virulence factor expression (Proteomics 5, 18, (4852-4863) DOI: 10.1002/pmic.200500112). Proteomics, 9(13), 3623-.
Kunec, D., Nanduri, B., & Burgess, S. C. (2009). Experimental annotation of channel catfish virus by probabilistic proteogenomic mapping. Proteomics, 9(10), 2634-2647.

PMID: 19391180;Abstract:

Experimental identification of expressed proteins by proteomics constitutes the most reliable approach to identify genomic location and structure of protein-coding genes and substantially complements computational genome annotation. Channel catfish herpesvirus (CCV) is a simple comparative model for understanding herpesvirus biology and the evolution of the Herpesviridae. The canonical CCV genome has 76 predicted ORF and only 12 of these have been confirmed experimentally. We describe a modification of a statistical method, which assigns significance measures, q-values, to peptide identifications based on 2-D LC ESI MS/MS, real-decoy database searches and SEQUEST XCorr and DCn scores. We used this approach to identify CCV proteins expressed during its replication in cell culture, to determine protein composition of mature virions and, consequently, to refine the canonical CCVgenome annotation. To complement trypsin, we used partial proteinase K digestion, which yielded greater proteome coverage. At FDR 5%, for peptide identifications, we identified 25/76 previously predicted ORF using trypsin and 31/76 using proteinase K. Furthermore, we identified 17 novel protein-coding regions (7 potential ATG-initiated ORF). Most of these novel ORF encode small proteins (100 amino acids). Directed, strand-specific reverse transcription real-time PCR confirmed RNA expression from 6/7 novel ATG-initiated ORF investigated. © 2009 Wiley-VCH Verlag GmbH & Co. KGaA.

H., B., Harris, T., McCarthy, F. M., Lamont, S. J., & Burgess, S. C. (2007). Non-electrophoretic differential detergent fractionation proteomics using frozen whole organs. Rapid Communications in Mass Spectrometry, 21(23), 3905-3909.

PMID: 17990261;Abstract:

Non-electrophoretic methods based on two-dimensional liquid chromatography followed directly by tandem mass spectrometry (2D-LC/MS2) have become the preferred method for high-throughput expression proteomics and are widely applied to fresh tissues. Pre-fractionation techniques are also used in combination with 2D-LC/MS2 to both increase the proteome size and to assign cellular locations. Data from such experiments have become central to systems biology analyses. Here we apply a differential detergent (pre)fractionation (DDF) followed by 2D-LC/MS2 to frozen archival tissues. Our results show that by using frozen archival tissues, we do not lose proteome coverage or the ability to assign proteins to cellular compartments. In addition, we were able to assign 'biological process' Gene Ontology (GO) annotations, which will facilitate systems biological modeling of our proteomics data. Copyright © 2007 John Wiley & Sons, Ltd.

Barrow, A. D., Burgess, S. C., Baigent, S. J., Howes, K., & Nair, V. K. (2003). Infection of macrophages by a lymphotropic herpesvirus: A new tropism for Marek's disease virus. Journal of General Virology, 84(10), 2635-2645.

PMID: 13679597;Abstract:

Marek's disease virus (MDV) is classified as an oncogenic lymphotropic herpesvirus of chickens. MDV productively and cytolytically infects B, αβT and γδT lymphocytes and latently infects T-helper lymphocytes. The aims of this study were to identify whether MDV infects macrophages in vivo and, if so, whether quantitative differences in macrophage infection are associated with MDV strain virulence. Chickens were infected with either virulent MDV (HPRS-16) or 'hypervirulent' MDV (C12/130). Flow cytometry with monoclonal antibodies recognizing MDV pp38 antigen and leukocyte antigens was used to identify MDV lytically infected cells. Macrophages from HPRS-16- and C12/130-infected chickens were pp38+. It is demonstrated that macrophages are pp38+ because they are infected and not because they have phagocytosed MDV antigens, as assessed by confocal microscopy using antibodies recognizing MDV antigens of the three herpesvirus kinetic classes: infected cell protein 4 (ICP4, immediate early), pp38 (early) and glycoprotein B (gB, late). Spleen macrophages from MDV-infected chickens were ICP4+, pp38+ and gB+, and ICP4 had nuclear localization denoting infection. Finally, MDV pp38+ macrophages had high inherent death rates, confirming cytolytic MDV infection, although production of virus particles has not been detected yet. These results have two fundamental implications for understanding MDV pathogenesis: (i) MDV evolved to perturb innate, in addition to acquired, immunity and (ii) macrophages are excellent candidates for transporting MDV to primary lymphoid organs during the earliest stages of pathogenesis.