Chengcheng Hu

Chengcheng Hu

Director, Biostatistics - Phoenix Campus
Professor, Public Health
Professor, Statistics-GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-9308

Work Summary

Chengcheng Hu has worked on a broad range of areas including cancer, occupational health, HIV/AIDS, and aging. He has extensive collaborative research in conducting methodological research in the areas of survival analysis, longitudinal data, high-dimensional data, and measurement error. His current methodological interest, arising from studies of viral and human genetics and biomarkers, is to develop innovative methods to investigate the relationship between high-dimensional information and longitudinal outcomes or survival endpoints.

Research Interest

Chengcheng Hu, Ph.D., is an Associate Professor, Public Health and Director, Biostatistics, Phoenix campus at the Mel and Enid Zuckerman College of Public Health, University of Arizona. He is also Director of the Biometry Core on the Chemoprevention of Skin Cancer Project at the University of Arizona Cancer Center. Hu has worked on multiple federal grants in a broad range of areas including cancer, occupational health, HIV/AIDS, and aging. In addition to extensive experience in collaborative research, he has conducted methodological research in the areas of survival analysis, longitudinal data, high-dimensional data, and measurement error. His current methodological interest, arising from studies of viral and human genetics and biomarkers, is to develop innovative methods to investigate the relationship between high-dimensional information and longitudinal outcomes or survival endpoints. Hu joined the UA Mel and Enid Zuckerman College of Public Health in 2008. Prior to this he was an assistant professor of Biostatistics at the Harvard School of Public Health from 2002 to 2008. While at Harvard, he also served as senior statistician in the Pediatric AIDS Clinical Trials Group (PACTG) and the International Maternal Pediatric Adolescent AIDS Clinical Trials Group (IMPAACT). Hu received his Ph.D. and M.S. in Biostatistics from the University of Washington and a M.A. in Mathematics from the Johns Hopkins University.

Publications

Dickinson, S. E., Olson, E. R., Zhang, J., Cooper, S. J., Melton, T., Criswell, P. J., Casanova, A., Dong, Z., Hu, C., Saboda, K., Jacobs, E. T., Alberts, D. S., & Bowden, G. T. (2011). p38 MAP kinase plays a functional role in UVB-induced mouse skin carcinogenesis. Molecular carcinogenesis, 50(6), 469-78.

UVB irradiation of epidermal keratinocytes results in the activation of the p38 mitogen-activated protein kinase (MAPK) pathway and subsequently activator protein-1 (AP-1) transcription factor activation and cyclooxygenase-2 (COX-2) expression. AP-1 and COX-2 have been shown to play functional roles in UVB-induced mouse skin carcinogenesis. In this study, the experimental approach was to express a dominant negative p38α MAPK (p38DN) in the epidermis of SKH-1 hairless mice and assess UVB-induced AP-1 activation, COX-2 expression, and the skin carcinogenesis response in these mice compared to wild-type littermates. We observed a significant inhibition of UVB-induced AP-1 activation and COX-2 expression in p38DN transgenic mice, leading to a significant reduction of UVB-induced tumor number and growth compared to wild-type littermates in a chronic UVB skin carcinogenesis model. A potential mechanism for this reduction in tumor number and growth rate is an inhibition of chronic epidermal proliferation, observed as reduced Ki-67 staining in p38DN mice compared to wild-type. Although we detected no difference in chronic apoptotic rates between transgenic and nontransgenic mice, analysis of acutely irradiated mice demonstrated that expression of the p38DN transgene significantly inhibited UVB-induced apoptosis of keratinocytes. These results counter the concerns that inhibition of p38 MAPK in a chronic situation could compromise the ability of the skin to eliminate potentially tumorigenic cells. Our data indicate that p38 MAPK is a good target for pharmacological intervention for UV-induced skin cancer in patients with sun damaged skin, and suggest that inhibition of p38 signaling reduces skin carcinogenesis by inhibiting COX-2 expression and proliferation of UVB-irradiated cells.

Mirochnick, M., Best, B. M., Stek, A. M., Capparelli, E. V., Hu, C., Burchett, S. K., Rossi, S. S., Hawkins, E., Basar, M., Smith, E., Read, J. S., & , I. 1. (2011). Atazanavir pharmacokinetics with and without tenofovir during pregnancy. Journal of acquired immune deficiency syndromes (1999), 56(5), 412-9.

Few data are available describing atazanavir exposure during pregnancy, especially when used in combination with tenofovir, whose coadministration with atazanavir results in decreased atazanavir exposure.

Spaite, D. W., Bobrow, B. J., Gaither, J. B., & Hu, C. (2017). In reply. Annals of emergency medicine, 70(2), 263-264.
Miller, J. A., Pappan, K., Thompson, P. A., Want, E. J., Siskos, A. P., Keun, H. C., Wulff, J., Hu, C., Lang, J. E., & Chow, H. S. (2015). Plasma Metabolomic Profiles of Breast Cancer Patients after Short-term Limonene Intervention. Cancer prevention research (Philadelphia, Pa.), 8(1), 86-93.

Limonene is a lipophilic monoterpene found in high levels in citrus peel. Limonene demonstrates anticancer properties in preclinical models with effects on multiple cellular targets at varying potency. While of interest as a cancer chemopreventive, the biologic activity of limonene in humans is poorly understood. We conducted metabolite profiling in 39 paired (pre/postintervention) plasma samples from early-stage breast cancer patients receiving limonene treatment (2 g QD) before surgical resection of their tumor. Metabolite profiling was conducted using ultra-performance liquid chromatography coupled to a linear trap quadrupole system and gas chromatography-mass spectrometry. Metabolites were identified by comparison of ion features in samples to a standard reference library. Pathway-based interpretation was conducted using the human metabolome database and the MetaCyc database. Of the 397 named metabolites identified, 72 changed significantly with limonene intervention. Class-based changes included significant decreases in adrenal steroids (P 0.01), and significant increases in bile acids (P ≤ 0.05) and multiple collagen breakdown products (P 0.001). The pattern of changes also suggested alterations in glucose metabolism. There were 47 metabolites whose change with intervention was significantly correlated to a decrease in cyclin D1, a cell-cycle regulatory protein, in patient tumor tissues (P ≤ 0.05). Here, oral administration of limonene resulted in significant changes in several metabolic pathways. Furthermore, pathway-based changes were related to the change in tissue level cyclin D1 expression. Future controlled clinical trials with limonene are necessary to determine the potential role and mechanisms of limonene in the breast cancer prevention setting. Cancer Prev Res; 8(1); 86-93. ©2014 AACR.

Lacombe, J., Brooks, C., Hu, C., Menashi, E., Korn, R., Yang, F., & Zenhausern, F. (2017). Analysis of Saliva Gene Expression during Head and Neck Cancer Radiotherapy: A Pilot Study. Radiation research, 188(1), 75-81.

Saliva, a biological fluid, is a promising candidate for novel approaches to prognosis, clinical diagnosis, monitoring and management of patients with both oral and systemic diseases. However, to date, saliva has not been widely investigated as a biomarker for radiation exposure. Since white blood cells are also present in saliva, it should theoretically be possible to investigate the transcriptional biomarkers of radiation exposure classically studied in whole blood. Therefore, we collected whole blood and saliva samples from eight head and neck cancer patients before the start of radiation treatment, at mid-treatment and after treatment. We then used a panel of five genes: BAX, BBC3, CDKN1A, DDB2 and MDM2, designated for assessing radiation dose in whole blood to evaluate gene expression changes that can occur during radiotherapy. The results revealed that the expression of the five genes did not change in whole blood. However, in saliva, CDKN1A and DDB2 were significantly overexpressed at the end, compared to the start, of radiotherapy, and MDM2 was significantly underexpressed between mid-treatment and at the end of treatment. Interestingly, CDKN1A and DDB2 expressions also showed an increasing monotonic relationship with total radiation dose received during radiotherapy. To our knowledge, these results show for the first time the ability to detect gene expression changes in saliva after head and neck cancer radiotherapy, and pave the way for further promising studies validating saliva as a minimally invasive means of biofluid collection to directly measure radiation dose escalation during treatment.