Michael F Brown

Michael F Brown

Professor, Chemistry and Biochemistry-Sci
Professor, Applied Mathematics - GIDP
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 621-2163

Research Interest

Michael F. Brown is Professor of Chemistry & Biochemistry at the University of Arizona. He is co-director of the Biological Physics Program and the Chemical Physics Program, and was a co-founder of the Biological Chemistry Program at the University of Arizona. He is internationally renowned for his work on the molecular basis of activation of G-protein-coupled receptors that are the targets for the majority of pharmaceuticals and medicines used by humans. The focus of his work is on biomembranes, with a particular emphasis on lipid-protein interactions in relation to potential drug targets involving membrane proteins. He is involved with investigation of the molecular basis of visual signaling involving rhodopsin. Moreover, Professor Brown is an expert in nuclear magnetic resonance (NMR) spectroscopy. His activities in the area of biomolecular NMR spectroscopy involve the devolvement and application of methods for studying the structure and dynamics of biomolecules. Michael Brown has authored over 130 original research papers, 10 book chapters, 4 book reviews, and has published more than 275 abstracts. His current H-index is 43. He numbers among his coworkers various prominent scientists worldwide. He presents his work frequently at national and international conferences, and is the recipient of a number of major awards. Professor Brown's many contributions have established him as a major voice in the area of biomembrane research and biomolecular spectroscopy. He is frequently a member of various review panels and exerts an influence on science policy at the national level. Among his accolades, he is an elected Fellow of the American Association for the Advancement of Science; American Physical Society; Japan Society for the Promotion of Science; and the Biophysical Society. He is a Fellow of the Galileo Circle of the University of Arizona. Most recently, he received the Avanti Award of the Biophysical Society. This premier honor recognizes his vast and innovative contributions to the field of membrane biophysics, and groundbreaking work in the development of NMR techniques to characterize lipid structure and dynamics. Most recently he presented the 2014 Avanti lecture of the Biophysical Society.

Publications

Molkte, S., Nevzorov, A. A., Sakai, N., Wallat, I., Job, C., Nakanishi, K., Heyn, M. P., & Brown, M. F. (1998). Chromophore orientation in bacteriorhodopsin determined from the angular dependence of deuterium nuclear magnetic resonance spectra of oriented purple membranes. Biochemistry, 37(34), 11821-11835.

PMID: 9718305;Abstract:

The orientation of prosthetic groups in membrane proteins is of considerable importance in understanding their functional role in energy conversion, signal transduction, and ion transport. In this work, the orientation of the retinylidene chromophore of bacteriorhodopsin (bR) was investigated using 2H NMR spectroscopy. Bacteriorhodopsin was regenerated with all-trans-retinal stereospecifically deuterated in one of the geminal methyl groups on C1 of the cyclohexene ring. A highly oriented sample, which is needed to obtain individual bond orientations from 2H NMR, was prepared by forming hydrated lamellar films of purple membranes on glass slides. A Monte Carlo method was developed to accurately simulate the 2H NMR line shape due to the distribution of bond angles and the orientational disorder of the membranes. The number of free parameters in the line shape simulation was reduced by independent measurements of the intrinsic line width (1.6 kHz from T(2e experiments) and the effective quadrupolar coupling constant (38.8- 39.8 kHz from analysis of the line shape of a powder-type sample). The angle between the C1-(1R)-1-CD3 bond and the purple membrane normal was determined with high accuracy from the simultaneous analysis of a series of 2H NMR spectra recorded at different inclinations of the uniaxially oriented sample in the magnetic field at 20 and -50 °C. The value of 68.7 ± 2.0°in dark-adapted bR was used, together with the previously determined angle of the C5-CD3 bond, to calculate the possible orientations of the cyclohexene ring in the membrane. The solutions obtained from 2H NMR were then combined with additional constraints from linear dichroism and electron cryomicroscopy to obtain the allowed orientations of retinal in the noncentrosymmetric membrane structure. The combined data indicate that the methyl groups on the polyene chain point toward the cytoplasmic side of the membrane and the N-H bond of the Schiff base to the extracellular side, i.e., toward the side of proton release in the pump pathway.

Ellena, J. F., Pates, R. D., & Brown, M. F. (1986). 31P NMR spectra of Rod Outer Segment and Sarcoplasmic Reticulum membranes show no evidence of immobilized components due to lipid-protein interactions. Biochemistry, 25(13), 3742-3748.

PMID: 3741833;Abstract:

31P NMR studies of rod outer segment (ROS) and sarcoplasmic reticulum (SR) membranes have been performed under conditions where broad and narrow spectral components can be clearly resolved. Control studies of an anhydrous, solid powder of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), as well as aqueous binary mixtures of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), demonstrate clearly that broad spectral components can be detected. For the codispersions of DSPC and DOPC in the mixed-phase region at 22°C, the 31P NMR spectra consist of a superposition of a broad component and a narrow, axially symmetric component, due to coexisting solid and liquid-crystalline domains, which are in slow exchange on the 31P NMR time scale. The 31P NMR spectra of the native ROS and SR membranes, however, consist of only a narrow component, to within experimental error, indicating that most or all of the phospholipids are in the liquid-crystalline (Lα) phase at 22°C. The above conclusions are in agreement with many, but not all, previous studies [see, e.g., Yeagle, P. L. (1982) Biophys. J. 37, 227-239]. It is estimated that at most 10% of the phospholipids in the ROS and SR membranes could give rise to broad 31P NMR spectral components, similar to those seen for anhydrous or solid-phase lipids, corresponding to ∼7 phospholipids/rhodopsin molecule and ∼11 phospholipids/ Ca2+-ATPase molecule, respectively. © 1986 American Chemical Society.

Botelho, A. V., Gibson, N. J., Thurmond, R. L., Wang, Y., & Brown, M. F. (2002). Conformational energetics of rhodopsin modulated by nonlamellar-forming lipids. Biochemistry, 41(20).

Rhodopsin is an important example of a G protein-coupled receptor (GPCR) in which 11-cis-retinal is the ligand and acts as an inverse agonist. Photolysis of rhodopsin leads to formation of the activated meta II state from its precursor meta I. Various mechanisms have been proposed to explain how the membrane composition affects the meta I-meta II conformational equilibrium in the visual process. For rod disk membranes and recombinant membranes containing rhodopsin, the lipid properties have been discussed in terms of elastic deformation of the bilayer. Here we have investigated the relation of nonlamellar-forming lipids, such as dioleoylphosphatidylethanolamine (DOPE), together with dioleoylphosphatidylcholine (DOPC), to the photochemistry of membrane-bound rhodopsin. We conducted flash photolysis experiments for bovine rhodopsin recombined with DOPE/DOPC mixtures (0:100 to 75:25) as a function of pH to explore the dependence of the photochemical activity on the monolayer curvature free energy of the membrane. It is well-known that DOPC forms bilayers, whereas DOPE has a propensity to adopt the nonlamellar, reverse hexagonal (H(II)) phase. In the case of neutral DOPE/DOPC recombinants, calculations of the membrane surface pH confirmed that an increase in DOPE favored the meta II state. Moreover, doubling the PE headgroup content versus the native rod membranes substituted for the polyunsaturated, docosahexaenoic acyl chains (22:6 omega 3), suggesting rhodopsin function is associated with a balance of forces within the bilayer. The data are interpreted by applying a flexible surface model, in which the meta II state is stabilized by lipids tending to form the H(II) phase, with a negative spontaneous curvature. A simple theory, based on principles of surface chemistry, for coupling the energetics of membrane proteins to material properties of the bilayer lipids is described. For rhodopsin, the free energy balance of the receptor and the lipids is altered by photoisomerization of retinal and involves curvature stress/strain of the membrane (frustration). A new biophysical principle is introduced: matching of the spontaneous curvature of the lipid bilayer to the mean curvature of the lipid/water interface adjacent to the protein, which balances the lipid/protein solvation energy. In this manner, the thermodynamic driving force for the meta I-meta II conformational change of rhodopsin is tightly controlled by mixtures of nonlamellar-forming lipids having distinctive material properties.

Brown, M., Brown, M. F., Mallikarjunaiah, K. J., Leftin, A., Kinnun, J. J., Justice, M. J., Rogozea, A. L., & Petrache, H. I. (2011). Solid-state ²H NMR shows equivalence of dehydration and osmotic pressures in lipid membrane deformation. Biophysical Journal, 100(1).

Lipid bilayers represent a fascinating class of biomaterials whose properties are altered by changes in pressure or temperature. Functions of cellular membranes can be affected by nonspecific lipid-protein interactions that depend on bilayer material properties. Here we address the changes in lipid bilayer structure induced by external pressure. Solid-state ²H NMR spectroscopy of phospholipid bilayers under osmotic stress allows structural fluctuations and deformation of membranes to be investigated. We highlight the results from NMR experiments utilizing pressure-based force techniques that control membrane structure and tension. Our ²H NMR results using both dehydration pressure (low water activity) and osmotic pressure (poly(ethylene glycol) as osmolyte) show that the segmental order parameters (S(CD)) of DMPC approach very large values of ≈ 0.35 in the liquid-crystalline state. The two stresses are thermodynamically equivalent, because the change in chemical potential when transferring water from the interlamellar space to the bulk water phase corresponds to the induced pressure. This theoretical equivalence is experimentally revealed by considering the solid-state ²H NMR spectrometer as a virtual osmometer. Moreover, we extend this approach to include the correspondence between osmotic pressure and hydrostatic pressure. Our results establish the magnitude of the pressures that lead to significant bilayer deformation including changes in area per lipid and volumetric bilayer thickness. We find that appreciable bilayer structural changes occur with osmotic pressures in the range of 10-100 atm or lower. This research demonstrates the applicability of solid-state ²H NMR spectroscopy together with bilayer stress techniques for investigating the mechanism of pressure sensitivity of membrane proteins.

Brown, M. F., Deese, A. J., & Dratz, E. A. (1982). Proton, carbon-13, and phosphorus-31 NMR methods for the investigation of rhodopsin-lipid interactions in retinal rod outer segment membranes. Methods in Enzymology, 81(C), 709-728.