Michael F Brown

Michael F Brown

Professor, Chemistry and Biochemistry-Sci
Professor, Applied Mathematics - GIDP
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 621-2163

Research Interest

Michael F. Brown is Professor of Chemistry & Biochemistry at the University of Arizona. He is co-director of the Biological Physics Program and the Chemical Physics Program, and was a co-founder of the Biological Chemistry Program at the University of Arizona. He is internationally renowned for his work on the molecular basis of activation of G-protein-coupled receptors that are the targets for the majority of pharmaceuticals and medicines used by humans. The focus of his work is on biomembranes, with a particular emphasis on lipid-protein interactions in relation to potential drug targets involving membrane proteins. He is involved with investigation of the molecular basis of visual signaling involving rhodopsin. Moreover, Professor Brown is an expert in nuclear magnetic resonance (NMR) spectroscopy. His activities in the area of biomolecular NMR spectroscopy involve the devolvement and application of methods for studying the structure and dynamics of biomolecules. Michael Brown has authored over 130 original research papers, 10 book chapters, 4 book reviews, and has published more than 275 abstracts. His current H-index is 43. He numbers among his coworkers various prominent scientists worldwide. He presents his work frequently at national and international conferences, and is the recipient of a number of major awards. Professor Brown's many contributions have established him as a major voice in the area of biomembrane research and biomolecular spectroscopy. He is frequently a member of various review panels and exerts an influence on science policy at the national level. Among his accolades, he is an elected Fellow of the American Association for the Advancement of Science; American Physical Society; Japan Society for the Promotion of Science; and the Biophysical Society. He is a Fellow of the Galileo Circle of the University of Arizona. Most recently, he received the Avanti Award of the Biophysical Society. This premier honor recognizes his vast and innovative contributions to the field of membrane biophysics, and groundbreaking work in the development of NMR techniques to characterize lipid structure and dynamics. Most recently he presented the 2014 Avanti lecture of the Biophysical Society.

Publications

Brown, M. F. (2012). Flexible Surface Model for Membrane Lipid-Protein Interactions. Biophysical Journal, 102, 6.
Brown, M., Salgado, G. F., Struts, A. V., Tanaka, K., Krane, S., Nakanishi, K., & Brown, M. F. (2006). Solid-state 2H NMR structure of retinal in metarhodopsin I. Journal of the American Chemical Society, 128(34).

The structural and photochemical changes in rhodopsin due to absorption of light are crucial for understanding the process of visual signaling. We investigated the structure of trans-retinal in the metarhodopsin I photointermediate (MI), where the retinylidene cofactor functions as an antagonist. Rhodopsin was regenerated using retinal that was (2)H-labeled at the C5, C9, or C13 methyl groups and was reconstituted with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. Membranes were aligned by isopotential centrifugation, and rhodopsin in the supported bilayers was then bleached and cryotrapped in the MI state. Solid-state (2)H NMR spectra of oriented rhodopsin in the low-temperature lipid gel state were analyzed in terms of a static uniaxial distribution (Nevzorov, A. A.; Moltke, S.; Heyn, M. P.; Brown, M. F. J. Am. Chem. Soc. 1999, 121, 7636-7643). The line shape analysis allowed us to obtain the methyl bond orientations relative to the membrane normal in the presence of substantial alignment disorder (mosaic spread). Relative orientations of the methyl groups were used to calculate effective torsional angles between the three different planes that represent the polyene chain and the beta-ionone ring of retinal. Assuming a three-plane model, a less distorted structure was found for retinal in MI compared to the dark state. Our results are pertinent to how photonic energy is channeled within the protein to allow the strained retinal conformation to relax, thereby forming the activated state of the receptor.

Brown, M. F., Seelig, J., & Häberlen, U. (1979). Structural dynamics in phospholipid bilayers from deuterium spin-lattice relaxation time measurements. The Journal of Chemical Physics, 70(11), 5045-5053.

Abstract:

The quadrupolar spin-lattice (T1) relaxation of deuterium labeled phospholipid bilayers has been investigated at a resonance frequency of 54.4 MHz. T1 measurements are reported for multilamellar dispersions, single bilayer vesicles, and chloroform/methanol solutions of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), selectively deuterated at ten different positions in each of the fatty acyl chains and at the sn-3 carbon of the glycerol backbone. At all segment positions investigated, the T 1 relaxation times of the multilamellar and vesicle samples of DPPC were found to be similar. The profiles of the spin-lattice relaxation rate (1/T1) as a function of the deuterated chain segment position resemble the previously determined order profiles [A. Seelig and J. Seelig, Biochem. 13, 4839 (1974)]. In particular, the relaxation rates are approximately constant over the first part of the fatty acyl chains (carbon segments C3-C9), then decreasing in the central region of the bilayer. In chloroform/methanol solution, by contrast, the relaxation rates decrease continuously from the glycerol backbone region to the chain terminal methyl groups. The contributions from molecular order and motion to the T1 relaxation rates have been evaluated and correlation time profiles derived as a function of chain position. The results suggest that the motions of the various methylene segments are correlated in the first part of the fatty acyl chains (C3-C9), occurring at frequencies up to 1/τc∼1010Hz. Beyond C9, the rate and amplitude of the chain segmental motions increase, approaching that of simple paraffinic liquids in the central region of the bilayer (1/τc≃1011Hz). The T1 relaxation rates of multilamellar dispersions of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) deuterated at the 9, 10 double bond of the sn-2 chain were also determined and found to be significantly faster than those of the CD2 chain segments of DPPC bilayers. This is most likely due to the larger size and correspondingly slower motion of the chain segment containing the double bond. At segments close to the lipid-water interface the rate of motion is considerably less than in the hydrocarbon region of the bilayer. © 1979 American Institute of Physics.

Lee, S. K., Molugu, T. R., Brown, M. F., & Mallikarjunaiah, K. J. (2016). Elastic Deformation and Collective Dynamics in Lipid Membranes: A Solid-State 2H NMR Relaxation Study. Biophysical Journal, 110, 396a.
Salinas, A. M., Perera, S. M., & Brown, M. F. (2017). Hydration Thermodynamics of a Powdered G-Protein-Coupled Receptor. Biophysical Journal.