Raina Margaret Maier
Interim Director, Institute of the Environment
Professor, BIO5 Institute
Professor, Environmental Science-Ext
Professor, Pharmaceutical Sciences
Professor, Pharmacology and Toxicology
Primary Department
Department Affiliations
(520) 621-7234
Research Interest
Raina M Maier, PhD, is a Professor of Environmental Microbiology in the Department of Soil, Water and Environmental Science and Director of the University of Arizona NIEHS Superfund Research Program. She also serves as Director of the University of Arizona Center for Environmentally Sustainable Mining and as Deputy Director of the TRIF Water Sustainability Program. Dr. Maier is internationally known for her work on microbial surfactants (biosurfactants) including discovery of a new class of biosurfactants and of novel applications for these unique materials in remediation and green technologies. She is also recognized for her work on the relationships between microbial diversity and ecosystem function in oligotrophic environments such as carbonate caves, the Atacama desert, and mine tailings. Dr. Maier has published over 100 original research papers, authored 23 book chapters, and holds a patent on the use of biosurfactants to control zoosporic plant pathogens. She is the lead author on the textbook “Environmental Microbiology” currently in its second edition.Dr. Maier emphasizes a multidisciplinary approach to her work and has served as PI or co-PI on several large granting efforts including the UA NIEHS Superfund Research Program, the UA NSF Kartchner Caverns Microbial Observatory, and the UA NSF Collaborative Research in Chemistry grant on biosurfactants.


Monica D. Ramirez-Andreotta, ., Mark L. Brusseau, ., Paloma Beamer, ., & Raina M. Maier, . (2013). Home gardening near a mining site in an arsenic-endemic region of Arizona: Assessing arsenic exposure dose and risk via ingestion of home garden vegetables, soils, and water. Science of the Total Environment, 454-455, 373-382.
BIO5 Collaborators
Paloma Beamer, Raina Margaret Maier
Hogan, D. E., Curry, J. E., Pemberton, J. E., & Maier, R. M. (2017). Rhamnolipid biosurfactant complexation of rare earth elements. JOURNAL OF HAZARDOUS MATERIALS, 340, 171-178.
BIO5 Collaborators
Joan E Curry, Raina Margaret Maier
Curry, J., Baughman, K. F., Maier, R. M., Norris, T. A., Beam, B. M., Mudalige, A., Pemberton, J. E., & Curry, J. E. (2010). Evaporative deposition patterns of bacteria from a sessile drop: effect of changes in surface wettability due to exposure to a laboratory atmosphere. Langmuir : the ACS journal of surfaces and colloids, 26(10).
BIO5 Collaborators
Joan E Curry, Raina Margaret Maier

Evaporative deposition from a sessile drop is a simple and appealing way to deposit materials on a surface. In this work, we deposit living, motile colloidal particles (bacteria) on mica from drops of aqueous solution. We show for the first time that it is possible to produce a continuous variation in the deposition pattern from ring deposits to cellular pattern deposits by incremental changes in surface wettability which we achieve by timed exposure of the mica surface to the atmosphere. We show that it is possible to change the contact angle of the drop from less than 5 degrees to near 20 degrees by choice of atmospheric exposure time. This controls the extent of drop spreading, which in turn determines the architecture of the deposition pattern.

Stein, M. M., Hrusch, C. L., Gozdz, J., Igartua, C., Pivniouk, V., Murray, S. E., Ledford, J. G., Marques dos Santos, M., Anderson, R. L., Metwali, N., Neilson, J. W., Maier, R. M., Gilbert, J. A., Holbreich, M., Thorne, P. S., Martinez, F. D., von Mutius, E., Vercelli, D., Ober, C., & Sperling, A. I. (2016). Innate Immunity and Asthma Risk in Amish and Hutterite Farm Children. The New England journal of medicine, 375(5), 411-21.
BIO5 Collaborators
Julie Ledford, Raina Margaret Maier, Fernando Martinez

The Amish and Hutterites are U.S. agricultural populations whose lifestyles are remarkably similar in many respects but whose farming practices, in particular, are distinct; the former follow traditional farming practices whereas the latter use industrialized farming practices. The populations also show striking disparities in the prevalence of asthma, and little is known about the immune responses underlying these disparities.

Henry, H. F., Burken, J. G., Maier, R. M., Newman, L. A., Rock, S., Schnoor, J. L., & Suk, W. A. (2013). Phytotechnologies--preventing exposures, improving public health. International journal of phytoremediation, 15(9).

Phytotechnologies have potential to reduce the amount or toxicity of deleterious chemicals and agents, and thereby, can reduce human exposures to hazardous substances. As such, phytotechnologies are tools for primary prevention in public health. Recent research demonstrates phytotechnologies can be uniquely tailored for effective exposure prevention in a variety of applications. In addition to exposure prevention, plants can be used as sensors to identify environmental contamination and potential exposures. In this paper, we have presented applications and research developments in a framework to illustrate how phytotechnologies can meet basic public health needs for access to clean water, air, and food. Because communities can often integrate plant-based technologies at minimal cost and with low infrastructure needs, the use of these technologies can be applied broadly to minimize potential contaminant exposure and improve environmental quality. These natural treatment systems also provide valuable ecosystem services to communities and society. In the future, integrating and coordinating phytotechnology activities with public health research will allow technology development focused on prevention of environmental exposures to toxic compounds. Hence, phytotechnologies may provide sustainable solutions to environmental exposure challenges, improving public health and potentially reducing the burden of disease.