Raina Margaret Maier

Raina Margaret Maier

Professor, Environmental Science
Professor, Pharmaceutical Sciences
Professor, Pharmacology and Toxicology
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 621-7231

Research Interest

Raina M Maier, PhD, is a Professor of Environmental Microbiology in the Department of Soil, Water and Environmental Science and Director of the University of Arizona NIEHS Superfund Research Program. She also serves as Director of the University of Arizona Center for Environmentally Sustainable Mining and as Deputy Director of the TRIF Water Sustainability Program. Dr. Maier is internationally known for her work on microbial surfactants (biosurfactants) including discovery of a new class of biosurfactants and of novel applications for these unique materials in remediation and green technologies. She is also recognized for her work on the relationships between microbial diversity and ecosystem function in oligotrophic environments such as carbonate caves, the Atacama desert, and mine tailings. Dr. Maier has published over 100 original research papers, authored 23 book chapters, and holds a patent on the use of biosurfactants to control zoosporic plant pathogens. She is the lead author on the textbook “Environmental Microbiology” currently in its second edition.Dr. Maier emphasizes a multidisciplinary approach to her work and has served as PI or co-PI on several large granting efforts including the UA NIEHS Superfund Research Program, the UA NSF Kartchner Caverns Microbial Observatory, and the UA NSF Collaborative Research in Chemistry grant on biosurfactants.

Publications

Zhang, L., Pemberton, J. E., & Maier, R. M. (2014). Effect of fatty acid substrate chain length on Pseudomonas aeruginosa ATCC 9027 monorhamnolipid yield and congener distribution. PROCESS BIOCHEMISTRY, 49(6), 989-995.

Rhamnolipids are surface-active molecules produced by Pseudornonas aeruginosa as congener mixtures. They are considered "green" alternatives to synthetic surfactants used in industrial, remediation and pharmaceutical applications. Optimizing yield as well as controlling congener distribution are necessary steps for successful commercialization of rhamnolipids. This study used a mixture of glucose and fatty acids of different chain length (C-12-C-22) and saturation (C-18:1 and C-18:2) to produce monorhamnolipids and determine the effect of fatty acid substrates on rhamnolipid yield, percent carbon conversion and congener distribution. Results show that 1% glucose + 0.25% stearic acid (C-18) produced the greatest yield (2.1 g L-1) compared to other glucose-fatty acid combinations (0.8-1.8 g L-1)(.) Various glucose + C-18 ratios were then tested to optimize yield and percent substrate carbon conversion to monorhamnolipid. Results revealed a positive linear correlation between the mass percent of C-18 used and the percent carbon conversion. A mass percent of 67% C-18 was optimal resulting in a 44% carbon conversion and a yield of 13.7 gL(-1) monorhamnolipid. For all fatty acid substrates tested, the RhaCioCio was the most abundant and RhaC(10)C(12:1) was the least abundant of the four major congeners produced. However, the relative amount of RhaC(10)C(8) and RhaC(10)C(12) congeners was dependent on several factors: in general, fatty acid substrates with relatively short chain length (C-12 and C-14), unsaturated fatty acid substrate (c(18:2)), and longer cultivation time resulted in a higher RhaC(10)C(8)/RhaC(10)C(12) ratio. These findings will assist in mass production of monorhamnolipids and controlling the specific congeners produced. (C) 2014 Elsevier Ltd. All rights reserved.

Jordan, F. L., & Maier, R. M. (1999). Development of an agar lift-DNA/DNA hybridization technique for use in visualization of the spatial distribution of Eubacteria on soil surfaces. Journal of Microbiological Methods, 38(1-2), 107-117.

PMID: 10520591;Abstract:

While microbial growth is well-understood in pure culture systems, less is known about growth in intact soil systems. The objective of this work was to develop a technique to allow visualization of the two-dimensional spatial distribution of bacterial growth on a homogenous soil surface. This technique is a two-step process wherein an agar lift is taken and analyzed using a universal gene probe. An agar lift is comprised of a thin layer of soil that is removed from a soil surface using an agar slab. The agar is incubated to allow for microbial growth, after which, colonies are transferred to a membrane for conventional bacterial colony DNA/DNA hybridization analysis. In this study, a eubacterial specific probe was used to demonstrate that growing bacterial populations on soil surfaces could be visualized. Results show that microbial growth and distribution was nonuniform across the soil surface. Spot supplementation of the soil with benzoate or glucose resulted in a localized microbial growth response. Since only growing colonies are detected, this technique should facilitate a greater understanding of the microbial distribution and its response to substrate addition in more heterogenous soil systems.

Landrigan, P. J., Wright, R. O., Cordero, J. F., Eaton, D. L., Goldstein, B. D., Hennig, B., Maier, R. M., Ozonoff, D. M., Smith, M. T., & Tukey, R. H. (2015). The NIEHS Superfund Research Program: 25 Years of Translational Research for Public Health. Environmental health perspectives, 123(10), 909-18.

The Superfund Research Program (SRP) is an academically based, multidisciplinary, translational research program that for 25 years has sought scientific solutions to health and environmental problems associated with hazardous waste sites. SRP is coordinated by the National Institute of Environmental Health Sciences (NIEHS). It supports multi-project grants, undergraduate and postdoctoral training programs, individual research grants, and Small Business Innovation Research (SBIR) and Technology Transfer Research (STTR) grants.

Zhang, Y., & Miller, R. M. (1994). Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Applied and Environmental Microbiology, 60(6), 2101-2106.

PMID: 8031099;PMCID: PMC201607;Abstract:

In this study, the effect of a purified rhamnolipid biosurfactant on the hydrophobicity of octadecane-degrading cells was investigated to determine whether differences in rates of octadecane biodegradation resulting from the addition of rhamnolipid to four strains of Pseudomonas aeruginosa could be related to measured differences in hydrophobicity. Cell hydrophobicity was determined by a modified bacterial adherence to hydrocarbon (BATH) assay. Bacterial adherence to hydrocarbon quantitates the preference of cell surfaces for the aqueous phase or the aqueous-hexadecane interface in a two- phase system of water and hexadecane. On the basis of octadecane biodegradation in the absence of rhamnolipid, the four bacterial strains were divided into two groups: the fast degraders (ATCC 15442 and ATCC 27853), which had high cell hydrophobicities (74 and 55% adherence to hexadecane, respectively), and the slow degraders (ATCC 9027 and NRRL 3198), which had low cell hydrophobicities (27 and 40%, respectively). Although in all cases rhamnolipid increased the aqueous dispersion of octadecane at least 104- fold, at low rhamnolipid concentrations (0.6 mM), biodegradation by all four strains was initially inhibited for at least 100 h relative to controls. At high rhamnolipid concentrations (6 mM), biodegradation by the fast degraders was slightly inhibited relative to controls, but the biodegradation by the slow degraders was enhanced relative to controls. Measurement of cell hydrophobicity showed that rhamnolipids increased the cell hydrophobicity of the slow degraders but had no effect on the cell hydrophobicity of the fast degraders. The rate at which the cells became hydrophobic was found to depend on the rhamnolipid concentration and was directly related to the rate of octadecane biodegradation. These results suggest that the bioavailability of octadecane in the presence of rhamnolipid is controlled by both aqueous dispersion of octadecane and cell hydrophobicity.

Sandrin, T. R., Kight, W. B., Maier, W. J., & Maier, R. M. (2006). Influence of a nonaqueous phase liquid (NAPL) on biodegradation of phenanthrene. Biodegradation, 17(5), 423-435.

PMID: 16477359;Abstract:

A series of batch reactor experiments was carried out to examine the effect of a nonaqueous phase liquid (NAPL) on the biodegradation of a hydrophobic solute. A mathematical program model that describes physical processes of solute solubilization and partitioning between the NAPL and aqueous phases as well as microbial degradation and oxygen utilization was used to analyze the test data. The model calculates the cumulative changes in concentration of substrate, cell mass, carbon dioxide, and dissolved oxygen as a function of time. The equations incorporate the effects of solute solubilization, partitioning, biodegradation, as well as oxygen availability. Hexadecane was used as the model NAPL and was not biodegraded in the timeframe of the experiments performed. The model solute was the polyaromatic hydrocarbon, phenanthrene. In agreement with several previous studies, experimental measurements showed that hexadecane increased rates of mineralization of 15 mg phenanthrene when present at low mass but decreased rates at high mass. Model results suggest that partitioning of the phenanthrene into the hexadecane phase limits bioavailability at high NAPL mass. Further the model suggests that mineralization rates were higher with the low NAPL mass because aqueous phenanthrene concentrations were higher in those treatments from ca. 20 to 40 h than in other treatments. Finally, experiments showed that the presence of hexadecane, at all masses tested, resulted in a lower cell yield, effectively increasing the amount of CO2 produced during the experiment. Model results suggest that this is due to changes in phenanthrene metabolism that are induced by the presence of the hexadecane phase. Model studies aimed at increasing rates of biodegradation by modifying operating conditions are described along with practical approaches to implementing these modifications. © Springer 2006.