Raina Margaret Maier

Raina Margaret Maier

Professor, Environmental Science
Professor, Pharmaceutical Sciences
Professor, Pharmacology and Toxicology
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 621-7231

Research Interest

Raina M Maier, PhD, is a Professor of Environmental Microbiology in the Department of Soil, Water and Environmental Science and Director of the University of Arizona NIEHS Superfund Research Program. She also serves as Director of the University of Arizona Center for Environmentally Sustainable Mining and as Deputy Director of the TRIF Water Sustainability Program. Dr. Maier is internationally known for her work on microbial surfactants (biosurfactants) including discovery of a new class of biosurfactants and of novel applications for these unique materials in remediation and green technologies. She is also recognized for her work on the relationships between microbial diversity and ecosystem function in oligotrophic environments such as carbonate caves, the Atacama desert, and mine tailings. Dr. Maier has published over 100 original research papers, authored 23 book chapters, and holds a patent on the use of biosurfactants to control zoosporic plant pathogens. She is the lead author on the textbook “Environmental Microbiology” currently in its second edition.Dr. Maier emphasizes a multidisciplinary approach to her work and has served as PI or co-PI on several large granting efforts including the UA NIEHS Superfund Research Program, the UA NSF Kartchner Caverns Microbial Observatory, and the UA NSF Collaborative Research in Chemistry grant on biosurfactants.

Publications

Heo, C. H., Maier, R. M., & Curry, J. E. (2006). Directly measuring the adhesive and elastic properties of bacteria using a surface force apparatus: Effect of desiccation. Materials Research Society Symposium Proceedings, 925, 1-6.

Abstract:

Bacterial adhesion is the first step in biofilm formation which impacts numerous environmental, industrial and medical processes. Examples of undesirable consequences of biofilm formation include metal rust, sewage sludge and bacteria-related diseases. Desirable consequences are biofiltration and bioremediation. Bacteria are resilient and can survive in harsh environments. A severe stress is desiccation since dehydration can damage DNA and change the properties of proteins. Some bacteria protect against dehydration by accumulating sugars such as sucrose and trehalose while others undergo a transformation from an active to a dormant state. Evaporative deposition of bacteria on a surface shows that some bacteria aggregate to form two dimensional patterns which may be important for nutrient sharing and survival in dry conditions'. Since bacteria are increasingly being employed as components in biosensors and biofilm reactors, it is important to understand the material properties of bacteria in dry conditions for these applications. For a decade, Atomic Force Microscopy (AFM) has been the primary tool used to study the adhesion and elastic properties of individual bacteria. In this work we show it is possible to use a Surface Forces Apparatus (SFA) to measure elastic and adhesive properties of small collections of surface bound bacteria. The measurements are conducted with incomplete, patterned bacterial films and we have developed a protocol to image the contact area with AFM after the experiment. Using the SFA, we measured the force profile between a Pseudomonas aeruginosa PAO1 film and a bare mica surface. P. aeruginosa PAO1 is a . ubiquitous gram-negative soil bacterium and is also an opportunistic pathogen. We repeated the measurement in the same contact position for six days to determine the effect of desiccation on the film material properties. © 2006 Materials Research Society.

Herman, D. C., Artiola, J. F., & Miller, R. M. (1995). Removal of cadmium, lead, and zinc from soil by a rhamnolipid biosurfactant. Environmental Science and Technology, 29(9), 2280-2285.

Abstract:

Complexation of cadmium, lead, and zinc (singly and in a mixture) by a monorhamnolipid biosurfactant produced by Pseudomonas aeruginosa ATCC 9027 was studied in batch solution and soil experiments. Conditional stability constants (log K(L)) for metal-rhamnolipid complexation in a buffered medium (0.1 M Pipes, pH 6.8) were determined in duplicate using an ion-exchange technique and averaged 6.5 (Cd2+), 6.6 (Pb2+), and 5.4 (Zn2+); these values are similar or slightly higher than literature values for Cd2+ and Pb2+ complexation with fulvic acid and activated sludge solids. To determine the ability of rhamnolipid to desorb soil-bound metals, rhamnolipid solutions (12.5, 25, 50, and 80 mM) were added to soil containing sorbed Cd2+ (1.46 mmol kg-1), Pb2+ (1.96 mmol kg-1), or a mixture of Pb2+- Cd2+-Zn2+ (3.4 mmol kg-1). At 12.5 and 25 mM rhamnolipid, rhamnolipid sorption to soil exceeded 78%, and less than 11% of soil-bound Cd2+ and Zn2+ was desorbed. However, ion exchange of bound metals with K+ present in the rhamnolipid matrix could account for the removal of between 16 and 48% of the sorbed Cd2+ and Zn2+. At 50 and 80 mM rhamnolipid, rhamnolipid sorption to soil decreased to between 20 and 77%, and the removal of Cd2+ and Zn2+ could exceed the removal by ion exchange by as much as 3-fold. The behavior of Pb2+ was quite different. Less than 2% of soil-bound Pb2+ was desorbed due to ion exchange, although up to 43% was desorbed by 80 mM rhamnolipid.

Miller, R. M. (1995). Biosurfactant-facilitated remediation of metal-contaminated soils. Environmental Health Perspectives, 103(SUPPL. 1), 59-62.

PMID: 7621801;PMCID: PMC1519337;Abstract:

Bioremediation of metal-contaminated wastestreams has been successfully demonstrated. Normally, whole cells or microbial exopolymers are used to concentrate and/or precipitate metals in the wastestream to aid in metal removal. Analogous remediation of metal-contaminated soils is more complex because microbial cells or large exopolymers do not move freely through the soil. The use of microbially produced surfactants (biosurfactants) is an alternative with potential for remediation of metal-contaminated soils. The distinct advantage of biosurfactants over whole cells or exopolymers is their small size, generally biosurfactant molecular weights are less than 1500. A second advantage is that biosurfactants have a wide variety of chemical structures that may show different metal selectivities and thus, metal removal efficiencies. A review of the literature shows that complexation capacities of several bacterial exopolymers was similar to the complexation capacity of a rhamnolipid biosurfactant produced by Pseudomonas aeruginosa ATCC 9027.

Root, R. A., Hayes, S. M., Hammond, C. M., Maier, R. M., & Chorover, J. (2015). Toxic metal(loid) speciation during weathering of iron sulfide mine tailings under semi-arid climate. Applied geochemistry : journal of the International Association of Geochemistry and Cosmochemistry, 62, 131-149.

Toxic metalliferous mine-tailings pose a significant health risk to ecosystems and neighboring communities from wind and water dispersion of particulates containing high concentrations of toxic metal(loid)s (e.g., Pb, As, Zn). Tailings are particularly vulnerable to erosion before vegetative cover can be reestablished, i.e., decades or longer in semi-arid environments without intervention. Metal(loid) speciation, linked directly to bioaccessibility and lability, is controlled by mineral weathering and is a key consideration when assessing human and environmental health risks associated with mine sites. At the semi-arid Iron King Mine and Humboldt Smelter Superfund site in central Arizona, the mineral assemblage of the top 2 m of tailings has been previously characterized. A distinct redox gradient was observed in the top 0.5 m of the tailings and the mineral assemblage indicates progressive transformation of ferrous iron sulfides to ferrihydrite and gypsum, which, in turn weather to form schwertmannite and then jarosite accompanied by a progressive decrease in pH (7.3 to 2.3). Within the geochemical context of this reaction front, we examined enriched toxic metal(loid)s As, Pb, and Zn with surficial concentrations 41.1, 10.7, 39.3 mM kg(-1) (3080, 2200, and 2570 mg kg(-1)), respectively. The highest bulk concentrations of As and Zn occur at the redox boundary representing a 1.7 and 4.2 fold enrichment relative to surficial concentrations, respectively, indicating the translocation of toxic elements from the gossan zone to either the underlying redox boundary or the surface crust. Metal speciation was also examined as a function of depth using X-ray absorption spectroscopy (XAS). The deepest sample (180 cm) contains sulfides (e.g., pyrite, arsenopyrite, galena, and sphalerite). Samples from the redox transition zone (25-54 cm) contain a mixture of sulfides, carbonates (siderite, ankerite, cerrusite, and smithsonite) and metal(loid)s sorbed to neoformed secondary Fe phases, principally ferrihydrite. In surface samples (0-35 cm), metal(loid)s are found as sorbed species or incorporated into secondary Fe hydroxysulfate phases, such as schwertmannite and jarosites. Metal-bearing efflorescent salts (e.g., ZnSO4·nH2O) were detected in the surficial sample. Taken together, these data suggest the bioaccessibility and lability of metal(loid)s are altered by mineral weathering, which results in both the downward migration of metal(loid)s to the redox boundary, as well as the precipitation of metal salts at the surface.

Vaughan, M. J., Maier, R. M., & Pryor, B. M. (2011). Fungal communities on speleothem surfaces in Kartchner caverns, Arizona, USA. International Journal of Speleology, 40(1), 65-77.

Abstract:

Kartchner Caverns, located near Benson, Arizona, USA, is an active carbonate cave that serves as the major attraction for Kartchner Caverns State Park. Low-impact development and maintenance have preserved prediscovery macroscopic cavern features and minimized disturbances to biological communities within the cave. The goal of this study was to examine fungal diversity in Kartchner Caverns on actively-forming speleothem surfaces. Fifteen formations were sampled from fve sites across the cave. Richness was assessed using standard culture-based fungal isolation techniques. A culture-independent analysis using denaturing gradient gel electrophoresis (DGGE) was used to assay evidence of community homogeneity across the cave through the separation of 18S rDNA amplicons from speleothem community DNA. The culturing effort recovered 53 distinct morphological taxonomic units (MTUs), corresponding to 43 genetic taxonomic units (GTUs) that represented 21 genera. From the observed MTU accumulation curve and the projected total MTU richness curve, it is estimated that 51 percent of the actual MTU richness was recovered. The most commonly isolated fungi belonged to the genera Penicillium, Paecilomyces, Phialophora, and Aspergillus. This culture-based analysis did not reveal signifcant differences in fungal richness or number of fungi recovered across sites. Cluster analysis using DGGE band profles did not reveal distinctive groupings of speleothems by sample site. However, canonical correspondence analysis (CCA) of culture-independent DGGE profles showed a signifcant effect of sampling site and formation type on fungal community structure. Taken together, these results reveal that diverse fungal communities exist on speleothem surfaces in Kartchner Caverns, and that these communities are not uniformly distributed spatially. Analysis of sample saturation indicated that more sampling depth is required to uncover the full scale of mycological richness across spelothem surfaces.