Xianchun Li

Xianchun Li

Professor, Entomology
Professor, Entomology / Insect Science - GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-1749

Work Summary

Xianchun Li's research aims to use genetics to shed light on the defense signaling of plants and the counterdefense of herbivorous insects, which may result in the design of new insecticides for crops like corn, in defense against the corn earworm. Additionally, Dr. Li's research is to define, globally, the regulatory triangle between nuclear receptors (NRs), their ligands, and cytochrome P450s (P450s) in Drosophila melanogaster, and to investigate the molecular mechanisms of Bt and conventional insecticide resistance.

Research Interest

Xianchun Li, PhD, is interested in understanding the physiological, biochemical, molecular and evolutionary bases of fundamental processes in the life history of insects such as embryonic polarity, metamorphosis, developmental commitment, host usage and environmental adaptation. One focus of his research is to elucidate the reciprocal signaling interactions between plants and insects, and the resulted on-going defense (in the case of plants) / counterdefense (in the case of herbivorous insects) phenotypic arm race over ecological time scale, with emphasis on the genetic machinery that percepts and transduces the reciprocal cues into genome and regulate defense / counterdefense phenotypes. Working systems include Helicoverpa zea, the corn earworm, a polyphagous noctuide of economic importance, and Drosophila melanogaster, the fruit fly, a model organism. State of arts and traditional techniques are combining to identify the cues and to uncover the signaling transduction cascade that links environmental cues, gene expression and the resulted defense/counterdefense phenotypes. This research may lead to characterization of genes for designing new insecticides and/or genetically modifying crops. The second focus of Dr. Li’s research is to define, globally, the regulatory triangle between nuclear receptors (NRs), their ligands, and cytochrome P450s (P450s) in Drosophila melanogaster. Nuclear receptors (NRs) constitute a transcription factor superfamily that has evolved to sense and bind endogenous (e.g., hormones) and/or exogenous (e.g., naturally-occurring or synthetic xenobiotics) signal compounds, resulting in differential expression of particular target genes, which underlies a range of fundamental biological processes, including growth, development, reproduction, behavior, host usage, and environmental adaptation. Many of those cue chemicals, namely NR ligands, are synthesized and/or metabolized by members of the P450s gene superfamily, whose expression may be regulated by certain NRs. Bioinformatics analyses as well as systematic functional genomic techniques such as microarray, X-ChIP, mutation and ectopic expression will be combined to define the genome-wide regulatory interaction loops between NRs and P450s as well as to assign, at least partially, functions of individual NRs and P450s in the life history of fruit fly. Given the evolutionary conservations of homologous NRs and P450s between vertebrates and invertebrates, the results obtained in this project are expected to provide insights into the reciprocal regulatory interactions between NRs and P450s in other animals including humans as well as to provide great insights into new avenue for human NR ligand identification and NR-related drug design. The third focus of his research is to investigate the molecular mechanisms of Bt and conventional insecticide resistance, which is a major threat in current IPM system. In collaboration with Dr. Bruce Tabashnik, Timothy Dennehy, and Yves Carriere in our Department, Dr. Li is going to compare Bt toxin binding affinity and other defects of natural (s, r1, r2, r3) and artificial mutant PBW (Pink Bollworm) cadherin proteins and thus define the key functional domains of PBW cadherin.

Publications

Xianchun, L. i., Baudry, J., Berenbaum, M. R., & Schuler, M. A. (2004). Structural and functional divergence of insect CYP6B proteins: From specialist to generalist cytochrome P450. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 2939-2944.

PMID: 14981232;PMCID: PMC365724;Abstract:

How polyphagous herbivores cope with the diversity and unpredictability of plant defenses remains largely unknown at both the genetic and molecular levels. To examine whether generalist counterdefense enzymes are structurally more flexible and functionally more diverse, two counterdefensive allelochemical-metabolizing cytochrome P450 proteins, CYP6B1 from the specialist Papilio polyxenes, feeding on furanocoumarin-containing plants, and CYP6B8 from the generalist Helicoverpa zea, feeding on hundreds of host plant species, are compared structurally and functionally. Molecular modeling indicates that CYP6B8 has more flexible overall folding, a more elastic catalytic pocket, and one more substrate access channel than CYP6B1. Baculovirus-mediated expression of the CYP6B8 and CYP6B1 proteins demonstrates that CYP6B8 metabolizes six biosynthetically diverse plant allelochemicals (xanthotoxin, quercetin, flavone, chlorogenic acid, indole-3-carbinol, and rutin) and three insecticides (diazinon, cypermethrin, and aldrin), whereas CYP6B1 metabolizes only two allelochemicals (xanthotoxin and flavone) and one insecticide (diazinon) of those tested. These results indicate that generalist counterdefense proteins are capable of accepting a more structurally diverse array of compounds compared with specialist counterdefense proteins.

Liu, S., Wang, M., & Li, X. (2015). Pupal melanization is associated with higher fitness in Spodoptera exigua. Scientific reports, 5, 10875.

Melanism has long been thought to be a habitat adaptation with a fitness cost. Here we reported a homozygous melanic strain (SEM) of Spodoptera exigua (Hübner) (Insecta: Lepidoptera: Noctuidae) established with black pupae spontaneously occurring within a typical laboratory population (SEW). The melanization is expressed globally, and only in the pupal stage. After pupation, the melanic SEM pupae gradually accumulate melanin to become completely black within 6 hours, whereas the wild-type SEW pupae gradually turn yellow-brown. The melanic SEM strain exhibits faster development in all life stages, heavier pupa weight, more mating time, higher fecundity, and accordingly, higher net reproductive rate and population trend index. While no reproductive isolation was observed between the SEM and SEW strains, the mating times per female of the reciprocal crosses and the SEM intracrosses were significantly higher than those of the SEW intracrosses. This represents a rare case of melanization that has fitness gains, rather than costs. Analysis of the life-history traits of this case and 14 previously reported cases of insect melanism indicate that none of melanization origin, stage, space and variation type determining whether melanism will cause fitness gain or cost.

Xinzhi, N. i., Sparks Jr., A. N., Riley, D. G., & Xianchun, L. i. (2011). Impact of applying edible oils to silk channels on ear pests of sweet corn. Journal of Economic Entomology, 104(3), 956-964.

PMID: 21735916;Abstract:

The impact of applying edible oils to corn silks on ear-feeding insects in sweet corn, Zea mays L., production was evaluated in 2006 and 2007. Six edible oils used in this experiment were canola, corn, olive, peanut, sesame, and soybean. Water and two commercial insecticidal oils (Neemix neem oil and nC21 Sunspray Ultrafine, a horticultural mineral oil) were used as the controls for the experiment. Six parameters evaluated in this experiment were corn earworm [Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae)] damage rating, the number of sap beetle [Carpophilus spp. (Coleoptera: Nitidulidae) ] adults and larvae, the number of corn silk fly (or picture-winged fly) (Diptera: Ulidiidae) larvae, common smut [Ustilago maydis (D.C.) Corda] infection rate, and corn husk coverage. Among the two control treatments, neem oil reduced corn earworm damage at both preand postpollination applications in 2006, but not in 2007, whereas the mineral oil applied at postpollination treatments reduced corn earworm damage in both years. The mineral oil also reduced the number of sap beetle adults, whereas the neem oil applied at postpollination attracted the most sap beetle adults in 2007. Among the six edible oil treatments, the corn and sesame oils applied at postpollination reduced corn earworm damage only in 2007. The application of the peanut oil at postpollination attracted more sap beetle adults in 2006, and more sap beetle larvae in 2007. Olive and neem oils significantly reduced husk coverage compared with the water control in both years. The mineral oil application consistently increased smut infection rate in both 2006 and 2007. Ramifications of using oil treatments in ear pest management also are discussed. © 2011 Entomological Society of America.

Xian, L. i., Wen, Z., Bohnert, H. J., Schuler, M. A., & Kushad, M. M. (2007). Myrosinase in horseradish (Armoracia rusticana) root: Isolation of a full-length cDNA and its heterologous expression in Spodoptera frugiperda insect cells. Plant Science, 172(6), 1095-1102.

Abstract:

Myrosinase (β-thioglucoside glucohydrolase, EC. 3.2.3.1), is the only known S-glucosidase in plants, catalyzing the hydrolysis of glucosinolates into compounds that have diverse biological activities. In the present study, a full-length cDNA encoding myrosinase (ArMY1) was cloned from horseradish (Armoracia rusticana) root. ArMY1 has an open reading frame of 1614 nucleotides with a deduced protein of 538 amino acids and molecular mass of 61.6 kD. ArMY1 shows highest overall amino acid identity (72%) with Arabidopsis thaliana myrosinase TGG2. Heterologous expression of ArMY1 in baculovirus-infected Sf9 cells resulted in an immunologically active recombinant ArMY1 protein, when probed with myrosinase-specific monoclonal antibody 3D7, with apparent mass 65 kD. ArMY1 mRNA signal of about 1.95 kb was detected in the leaves and roots of horseradish, but not in the florets of broccoli. Phylogenetic analysis showed that ArMY1 does not cluster with any of the currently known myrosinase subfamilies, MA, MB, MC, and may represent a novel myrosinase subfamily. This is the first report of cloning of myrosinase cDNA from horseradish root. It provides important sequence information that will enable further studies of myrosinase expression patterns and their interaction with myrosinase-binding proteins and other myrosinase-associated proteins. © 2007 Elsevier Ireland Ltd. All rights reserved.

Chu, D., Xiangshun, H. u., Gao, C., Zhao, H., Nichols, R. L., & Xianchun, L. i. (2012). Use of mitochondrial cytochrome oxidase i polymerase chain reaction-restriction fragment length polymorphism for identifying subclades of bemisia tabaci mediterranean group. Journal of Economic Entomology, 105(1), 242-251.

PMID: 22420277;Abstract:

The Mediterranean group (commonly known as Q biotype; hereafter MED) of the sweetpotato whitefly, Bemisia tabaci (Gennadius), originated in the Mediterranean region, but it now has been found in at least 10 countries outside the Mediterranean. Collections of B. tabaci from some of these countries exhibit different pest behaviors and pesticide resistance characteristics, yet all may be classified as MED. A phylogenetic analysis of 120 mitochondrial cytochrome oxidase I (mtCOI) sequences (JN966761-JN966880) of MED whiteflies collected in Arizona and of 417 retrieved from the GenBank database resolves the MED into five subclades, designated as Q1-Q5. Only subclades Q1 and Q2 have been detected in the United States. Q1 and the other four subclades (Q2-Q5) differ in the number or position of the AluI recognition sites. Based on the differences in the AluI recognition sites reported here and the previously reported differences in VspI recognition sites, we developed a simple diagnostic technique to identify subclades Q1-Q5 by using mtCOI polymerase chain reaction (PCR)-restriction fragment-length polymorphism (RFLP). A test of a worldwide collection of whiteflies demonstrates that this combination mtCOI PCR-RFLP technique can reliably distinguish not only the MED from the Middle East-Asia Minor 1 group but also the Q1 from any of the other four MED subclades. © 2012 Entomological Society of America.