Xianchun Li

Xianchun Li

Professor, Entomology
Professor, Entomology / Insect Science - GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-1749

Work Summary

Xianchun Li's research aims to use genetics to shed light on the defense signaling of plants and the counterdefense of herbivorous insects, which may result in the design of new insecticides for crops like corn, in defense against the corn earworm. Additionally, Dr. Li's research is to define, globally, the regulatory triangle between nuclear receptors (NRs), their ligands, and cytochrome P450s (P450s) in Drosophila melanogaster, and to investigate the molecular mechanisms of Bt and conventional insecticide resistance.

Research Interest

Xianchun Li, PhD, is interested in understanding the physiological, biochemical, molecular and evolutionary bases of fundamental processes in the life history of insects such as embryonic polarity, metamorphosis, developmental commitment, host usage and environmental adaptation. One focus of his research is to elucidate the reciprocal signaling interactions between plants and insects, and the resulted on-going defense (in the case of plants) / counterdefense (in the case of herbivorous insects) phenotypic arm race over ecological time scale, with emphasis on the genetic machinery that percepts and transduces the reciprocal cues into genome and regulate defense / counterdefense phenotypes. Working systems include Helicoverpa zea, the corn earworm, a polyphagous noctuide of economic importance, and Drosophila melanogaster, the fruit fly, a model organism. State of arts and traditional techniques are combining to identify the cues and to uncover the signaling transduction cascade that links environmental cues, gene expression and the resulted defense/counterdefense phenotypes. This research may lead to characterization of genes for designing new insecticides and/or genetically modifying crops. The second focus of Dr. Li’s research is to define, globally, the regulatory triangle between nuclear receptors (NRs), their ligands, and cytochrome P450s (P450s) in Drosophila melanogaster. Nuclear receptors (NRs) constitute a transcription factor superfamily that has evolved to sense and bind endogenous (e.g., hormones) and/or exogenous (e.g., naturally-occurring or synthetic xenobiotics) signal compounds, resulting in differential expression of particular target genes, which underlies a range of fundamental biological processes, including growth, development, reproduction, behavior, host usage, and environmental adaptation. Many of those cue chemicals, namely NR ligands, are synthesized and/or metabolized by members of the P450s gene superfamily, whose expression may be regulated by certain NRs. Bioinformatics analyses as well as systematic functional genomic techniques such as microarray, X-ChIP, mutation and ectopic expression will be combined to define the genome-wide regulatory interaction loops between NRs and P450s as well as to assign, at least partially, functions of individual NRs and P450s in the life history of fruit fly. Given the evolutionary conservations of homologous NRs and P450s between vertebrates and invertebrates, the results obtained in this project are expected to provide insights into the reciprocal regulatory interactions between NRs and P450s in other animals including humans as well as to provide great insights into new avenue for human NR ligand identification and NR-related drug design. The third focus of his research is to investigate the molecular mechanisms of Bt and conventional insecticide resistance, which is a major threat in current IPM system. In collaboration with Dr. Bruce Tabashnik, Timothy Dennehy, and Yves Carriere in our Department, Dr. Li is going to compare Bt toxin binding affinity and other defects of natural (s, r1, r2, r3) and artificial mutant PBW (Pink Bollworm) cadherin proteins and thus define the key functional domains of PBW cadherin.

Publications

Chen, S., & Xianchun, L. i. (2007). Transposable elements are enriched within or in close proximity to xenobiotic-metabolizing cytochrome P450 genes. BMC Evolutionary Biology, 7.

PMID: 17381843;PMCID: PMC1852546;Abstract:

Background. Transposons, i.e. transposable elements (TEs), are the major internal spontaneous mutation agents for the variability of eukaryotic genomes. To address the general issue of whether transposons mediate genomic changes in environment-adaptation genes, we scanned two alleles per each of the six xenobiotic-metabolizing Helicoverpa zea cytochrome P450 loci, including CYP6B8, CYP6B27, CYP321A1, CYP321A2, CYP9A12v3 and CYP9A14, for the presence of transposon insertions by genome walking and sequence analysis. We also scanned thirteen Drosophila melanogaster P450s genes for TE insertions by in silico mapping and literature search. Results. Twelve novel transposons, including LINEs (long interspersed nuclear elements), SINEs (short interspersed nuclear elements), MITEs (miniature inverted-repeat transposable elements), one full-length transib-like transposon, and one full-length Tcl-like DNA transpson, are identified from the alleles of the six H. zea P450 genes. The twelve transposons are inserted into the 5'flanking region, 3'flanking region, exon, or intron of the six environment-adaptation P450 genes. In D. melanogaster, seven out of the eight Drosophila P450s (CYP4E2, CYP6A2, CYP6A8, CYP6A9, CYP6G1, CYP6W1, CYP12A4, CYP12D1) implicated in insecticide resistance are associated with a variety of transposons. By contrast, all the five Drosophila P450s (CYP302A1, CYP306A1, CYP307A1, CYP314A1 and CYP315A1) involved in ecdysone biosynthesis and developmental regulation are free of TE insertions. Conclusion. These results indicate that TEs are selectively retained within or in close proximity to xenobiotic-metabolizing P450 genes. © 2007 Chen and Li; licensee BioMed Central Ltd.

Weihua, M. a., Chen, L., Wang, M., & Xianchun, L. i. (2008). Trade-offs between melanisation and life-history traits in Helicoverpa armigera. Ecological Entomology, 33(1), 37-44.

Abstract:

1. Previously we established a homozygous melanic strain (JBM) with 16 black pupae spontaneously occurring within a laboratory population (JBW) of Helicoverpa armigera and demonstrated that the melanisation is controlled by a single recessive autosomal gene. 2. Data obtained indicate that the melanisation is globally expressed in the pupal and adult stages (except for the body hairs of adults) but not in the egg and larval stages. No differences in body colour can be found between the melanic JBM and the wild-type JBW strains before the metamorphic pupation moult. After pupation, the JBM pupae gradually blacken, whereas the wild-type JBW pupae gradually turn brown, indicating that the biosynthetic steps leading to brown pigments are shut off in the JBM strain. In the adult stage, wings are darker and hairs on the abdomen and tergum are lighter in the melanic moths than in the wild-type individuals. 3. Life-table experiments reveal that the melanism is associated with slower development in all life stages, smaller body weight, lower mating rate and fecundity, less mating time, and accordingly, lower net reproduction rate and population trend index. 4. Single pair inbreeding and reciprocal crosses show that the mating rate is much lower in the inter-strain crosses than in the intra-strain crosses, indicating the presence of mating preference for its own colour morph and the presence to some degree of reproductive isolation between the two colour morphs. © 2007 The Royal Entomological Society.

Lu, S., Jiang, M., Huo, T., Li, X., & Zhang, Y. (2016). 3-hydroxy-3-methyl glutaryl coenzyme A reductase: an essential actor in the biosynthesis of cantharidin in the blister beetle Epicauta chinensis Laporte. INSECT MOLECULAR BIOLOGY, 25(1), 58-71.
Zhang, S., Gu, S., & Li, X. (2016). Entomology Moves into the Genomics Era. SCIENTIA SINICA Vitae, 46(10), 1162-1173.
Ni, X., Cottrell, T. E., Buntin, G. D., Li, X., Wang, W., & Zhuang, H. (2017). Monitoring of brown stink bug (Hemiptera: Pentatomidae) population dynamics in corn to predict its abundance using weather data. Insect science.

The brown stink bug (BSB), Euschistus servus (Say) (Hemiptera: Pentatomidae), is a serious economic pest of corn production in the southeastern United States. The BSB population dynamics was monitored for 17 weeks from tasseling to preharvest of corn plants (i.e., late May to mid-September) using pheromone traps in three corn fields from 2005 to 2009. The trap data showed two peaks in early June and mid-August, respectively. The relationship between trap catch and pregrowing season weather data was examined using correlation and stepwise multiple factor regression analyses. Weather indices used for the analyses were accumulated growing degree day (AGDD), number of days with minimum temperature below 0 °C (Subz), accumulated daily maximum (AMaxT) and minimum temperatures (AMinT) and rainfall (ARain). The weather indices were calculated with lower (10 °C) and upper (35 °C) as biological thresholds. The parameters used in regression analysis were seasonal abundance (or overall mean of BSB adult catch) (BSBm), number of BSB adults caught at a peak (PeakBSB), and peak week (Peakwk). The BSBm was negatively related to high temperature (AmaxT or AGDD) consistently, whereas 1stPeakBSB was positively correlated to both ARain and Subz, irrespective of weather data durations (the first 4, 4.5, and 5 months). In contrast, the 7-month weather data (AGDD7) were negatively correlated to the BSBm only, but not correlated to the second PeakBSB. The 5-year monitoring study demonstrated that weather data can be used to predict the BSB abundance at its first peak in tasseling corn fields in the southeastern U.S. states.