Deepta Bhattacharya

Deepta Bhattacharya

Professor, Immunobiology
Professor, Surgery
Professor, Cancer Biology - GIDP
Professor, Genetics - GIDP
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 626-8088

Research Interest

Research in the Bhattacharya lab focuses on molecular approaches to direct B cell differentiation to establish immunity to infectious disease, and stem cell differentiation for regenerative medicine. Current projects in the lab include: 1) Understanding the cellular basis of antibody-mediated immunity to variable viruses. After infection or vaccination, B cells that recognize the pathogen proliferate and undergo a massive level of expansion. Upon clearance of the infection a small fraction of the "best" B cells are retained to become memory B cells or long-lived plasma cells. Our recent work has established that memory B cells are excellent at recognizing not only the original pathogen, but also mutant escape variants of the pathogen. In contrast, long-lived plasma cells are highly specific only for the original pathogen. We are studying the transcription factors that regulate the memory B cell vs. long-lived plasma cell fate, and are studying mechanisms to alter this fate to provide effective immunity against mutable viruses such as influenza and Dengue. 2) Identifying molecular regulators of the duration of immunity. Most clinically used vaccines rely on the production of antibodies to confer immunity. The duration of immunity can vary greatly between different vaccines, yet the molecular basis of this remains unknown. Current efforts are focused on the identification of genes that regulate plasma cell lifespan and on the features of the vaccine that confer durable antibody immunity. 3) Engineering human pluripotent stem cells to generate antibody-mediated immunity. A small fraction of patients infected with HIV or dengue virus, or vaccinated against influenza develop remarkable antibodies that neutralize nearly all clinical isolates of these viruses. Yet it is unclear how to induce these types of antibodies in the broader population through standard vaccination. Using novel targeted nuclease technologies, we are engineering human embryonic stem cells to express these antibodies and differentiating them into transplantable long-lived plasma cells. The long-term goal of this project is to provide permanent immunity to recipients of these engineered plasma cells.

Publications

Bhattacharya, D., Cheah, M. T., Franco, C. B., Hosen, N., Pin, C. L., Sha, W. C., & Weissman, I. L. (2007). Transcriptional profiling of antigen-dependent murine B cell differentiation and memory formation. Journal of immunology (Baltimore, Md. : 1950), 179(10), 6808-19.

Humoral immunity is characterized by the generation of Ab-secreting plasma cells and memory B cells that can more rapidly generate specific Abs upon Ag exposure than their naive counterparts. To determine the intrinsic differences that distinguish naive and memory B cells and to identify pathways that allow germinal center B cells to differentiate into memory B cells, we compared the transcriptional profiles of highly purified populations of these three cell types along with plasma cells isolated from mice immunized with a T-dependent Ag. The transcriptional profile of memory B cells is similar to that of naive B cells, yet displays several important differences, including increased expression of activation-induced deaminase and several antiapoptotic genes, chemotactic receptors, and costimulatory molecules. Retroviral expression of either Klf2 or Ski, two transcriptional regulators specifically enriched in memory B cells relative to their germinal center precursors, imparted a competitive advantage to Ag receptor and CD40-engaged B cells in vitro. These data suggest that humoral recall responses are more rapid than primary responses due to the expression of a unique transcriptional program by memory B cells that allows them to both be maintained at high frequencies and to detect and rapidly respond to antigenic re-exposure.

Rossi, D. J., Seita, J., Czechowicz, A., Bhattacharya, D., Bryder, D., & Weissman, I. L. (2007). Hematopoietic stem cell quiescence attenuates DNA damage response and permits DNA damage accumulation during aging. Cell cycle (Georgetown, Tex.), 6(19), 2371-6.

The aging of tissue-specific stem and progenitor cells is believed to be central to the pathophysiological conditions arising in aged individuals. While the mechanisms driving stem cell aging are poorly understood, mounting evidence points to age-dependent DNA damage accrual as an important contributing factor. While it has been postulated that DNA damage may deplete stem cell numbers with age, recent studies indicate that murine hematopoietic stem cell (HSC) reserves are in fact maintained despite the accrual of genomic damage with age. Evidence suggests this to be a result of the quiescent (G0) cell cycle status of HSC, which results in an attenuation of checkpoint control and DNA damage responses for repair or apoptosis. When aged stem cells that have acquired damage are called into cycle under conditions of stress or tissue regeneration however, their functional capacity was shown to be severely impaired. These data suggest that age-dependent DNA damage accumulation may underlie the diminished capacity of aged stem cells to mediate a return to homeostasis after acute stress or injury. Moreover, the cytoprotection afforded by stem cell quiescence in stress-free, steady-state conditions suggests a mechanism through which potentially dangerous lesions can accumulate in the stem cell pool with age.

Purtha, W. E., Swiecki, M., Colonna, M., Diamond, M. S., & Bhattacharya, D. (2012). Spontaneous mutation of the Dock2 gene in Irf5-/- mice complicates interpretation of type I interferon production and antibody responses. Proceedings of the National Academy of Sciences of the United States of America, 109(15), E898-904.

Genome-wide studies have identified associations between polymorphisms in the IFN regulatory factor-5 (Irf5) gene and a variety of human autoimmune diseases. Its functional role in disease pathogenesis, however, remains unclear, as studies in Irf5(-/-) mice have reached disparate conclusions regarding the importance of this transcription factor in type I IFN production and antibody responses. We identified a spontaneous genomic duplication and frameshift mutation in the guanine exchange factor dedicator of cytokinesis 2 (Dock2) that has arisen in at least a subset of circulating Irf5(-/-) mice and inadvertently been bred to homozygosity. Retroviral expression of DOCK2, but not IRF-5, rescued defects in plasmacytoid dendritic cell and B-cell development, and Irf5(-/-) mice lacking the mutation in Dock2 exhibited normal plasmacytoid dendritic cell and B-cell development, largely intact type I IFN responses, and relatively normal antibody responses to viral infection. Thus, confirmation of the normal Dock2 genotype in circulating Irf5(-/-) mice is warranted, and our data may partly explain conflicting results in this field.

Purtha, W. E., Tedder, T. F., Johnson, S., Bhattacharya, D., & Diamond, M. S. (2011). Memory B cells, but not long-lived plasma cells, possess antigen specificities for viral escape mutants. The Journal of experimental medicine, 208(13), 2599-606.

Memory B cells (MBCs) and long-lived plasma cells (LLPCs) persist after clearance of infection, yet the specific and nonredundant role MBCs play in subsequent protection is unclear. After resolution of West Nile virus infection in mice, we demonstrate that LLPCs were specific for a single dominant neutralizing epitope, such that immune serum poorly inhibited a variant virus that encoded a mutation at this critical epitope. In contrast, a large fraction of MBC produced antibody that recognized both wild-type (WT) and mutant viral epitopes. Accordingly, antibody produced by the polyclonal pool of MBC neutralized WT and variant viruses equivalently. Remarkably, we also identified MBC clones that recognized the mutant epitope better than the WT protein, despite never having been exposed to the variant virus. The ability of MBCs to respond to variant viruses in vivo was confirmed by experiments in which MBCs were adoptively transferred or depleted before secondary challenge. Our data demonstrate that class-switched MBC can respond to variants of the original pathogen that escape neutralization of antibody produced by LLPC without a requirement for accumulating additional somatic mutations.

Bhattacharya, D., Logue, E. C., Bakkour, S., DeGregori, J., & Sha, W. C. (2002). Identification of gene function by cyclical packaging rescue of retroviral cDNA libraries. Proceedings of the National Academy of Sciences of the United States of America, 99(13), 8838-43.

Genes regulating responses in mammalian cells are often difficult to identify by functional cloning strategies limited to a single round of selection. Here we describe a strategy, cyclical packaging rescue (CPR), which allows rapid recovery and retransmission of retroviral cDNA libraries. CPR can be used not only with immortalized cell lines such as fibroblasts and Jurkat T cells, but also with primary B lymphocytes, which can be maintained only in short-term cultures. CPR allows for multiple rounds of selection and enrichment to identify cDNAs regulating responses in mammalian cells. Using CPR, five cDNAs were functionally cloned, which conferred protection against tumor necrosis factor alpha (TNFalpha)-induced apoptosis in RelA(-/-) fibroblasts. Three of the genes, RelA, cellular FLICE-like inhibitory protein (c-FLIP), and a dominant-negative mutant of TNF receptor 1 arising through CPR afforded strong protection against apoptosis. Two of the genes identified, Dbs and Fas-associated death domain protein (FADD), previously identified as a proapoptotic molecule, afforded partial protection against TNFalpha-induced apoptosis. These results suggest that CPR is a versatile method that permits functional identification of both wild-type and dominant-negative gene products that regulate cellular responses.