Michael F Brown

Michael F Brown

Professor, Chemistry and Biochemistry-Sci
Professor, Applied Mathematics - GIDP
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 621-2163

Research Interest

Michael F. Brown is Professor of Chemistry & Biochemistry at the University of Arizona. He is co-director of the Biological Physics Program and the Chemical Physics Program, and was a co-founder of the Biological Chemistry Program at the University of Arizona. He is internationally renowned for his work on the molecular basis of activation of G-protein-coupled receptors that are the targets for the majority of pharmaceuticals and medicines used by humans. The focus of his work is on biomembranes, with a particular emphasis on lipid-protein interactions in relation to potential drug targets involving membrane proteins. He is involved with investigation of the molecular basis of visual signaling involving rhodopsin. Moreover, Professor Brown is an expert in nuclear magnetic resonance (NMR) spectroscopy. His activities in the area of biomolecular NMR spectroscopy involve the devolvement and application of methods for studying the structure and dynamics of biomolecules. Michael Brown has authored over 130 original research papers, 10 book chapters, 4 book reviews, and has published more than 275 abstracts. His current H-index is 43. He numbers among his coworkers various prominent scientists worldwide. He presents his work frequently at national and international conferences, and is the recipient of a number of major awards. Professor Brown's many contributions have established him as a major voice in the area of biomembrane research and biomolecular spectroscopy. He is frequently a member of various review panels and exerts an influence on science policy at the national level. Among his accolades, he is an elected Fellow of the American Association for the Advancement of Science; American Physical Society; Japan Society for the Promotion of Science; and the Biophysical Society. He is a Fellow of the Galileo Circle of the University of Arizona. Most recently, he received the Avanti Award of the Biophysical Society. This premier honor recognizes his vast and innovative contributions to the field of membrane biophysics, and groundbreaking work in the development of NMR techniques to characterize lipid structure and dynamics. Most recently he presented the 2014 Avanti lecture of the Biophysical Society.

Publications

Brown, M. F., Brown, M., Struts, A. V., Salgado, G. F., Tanaka, K., Krane, S., & Nakanishi, K. (2007). Structural analysis and dynamics of retinal chromophore in dark and meta I states of rhodopsin from 2H NMR of aligned membranes. Journal of Molecular Biology, 372(1).

Rhodopsin is a prototype for G protein-coupled receptors (GPCRs) that are implicated in many biological responses in humans. A site-directed (2)H NMR approach was used for structural analysis of retinal within its binding cavity in the dark and pre-activated meta I states. Retinal was labeled with (2)H at the C5, C9, or C13 methyl groups by total synthesis, and was used to regenerate the opsin apoprotein. Solid-state (2)H NMR spectra were acquired for aligned membranes in the low-temperature lipid gel phase versus the tilt angle to the magnetic field. Data reduction assumed a static uniaxial distribution, and gave the retinylidene methyl bond orientations plus the alignment disorder (mosaic spread). The dark-state (2)H NMR structure of 11-cis-retinal shows torsional twisting of the polyene chain and the beta-ionone ring. The ligand undergoes restricted motion, as evinced by order parameters of approximately 0.9 for the spinning C-C(2)H(3) groups, with off-axial fluctuations of approximately 15 degrees . Retinal is accommodated within the rhodopsin binding pocket with a negative pre-twist about the C11=C12 double bond that explains its rapid photochemistry and the trajectory of 11-cis to trans isomerization. In the cryo-trapped meta I state, the (2)H NMR structure shows a reduction of the polyene strain, while torsional twisting of the beta-ionone ring is maintained. Distortion of the retinal conformation is interpreted through substituent control of receptor activation. Steric hindrance between trans retinal and Trp265 can trigger formation of the subsequent activated meta II state. Our results are pertinent to quantum and molecular mechanics simulations of ligands bound to GPCRs, and illustrate how (2)H NMR can be applied to study their biological mechanisms of action.

Brown, M., Brown, M. F., Lau, P., Grossfield, A., Feller, S. E., & Pitman, M. C. (2007). Dynamic structure of retinylidene ligand of rhodopsin probed by molecular simulations. Journal of Molecular Biology, 372(4).

Rhodopsin is currently the only available atomic-resolution template for understanding biological functions of the G protein-coupled receptor (GPCR) family. The structural basis for the phenomenal dark state stability of 11-cis-retinal bound to rhodopsin and its ultrafast photoreaction are active topics of research. In particular, the beta-ionone ring of the retinylidene inverse agonist is crucial for the activation mechanism. We analyzed a total of 23 independent, 100 ns all-atom molecular dynamics simulations of rhodopsin embedded in a lipid bilayer in the microcanonical (N,V,E) ensemble. Analysis of intramolecular fluctuations predicts hydrogen-out-of-plane (HOOP) wagging modes of retinal consistent with those found in Raman vibrational spectroscopy. We show that sampling and ergodicity of the ensemble of simulations are crucial for determining the distribution of conformers of retinal bound to rhodopsin. The polyene chain is rigidly locked into a single, twisted conformation, consistent with the function of retinal as an inverse agonist in the dark state. Most surprisingly, the beta-ionone ring is mobile within its binding pocket; interactions are non-specific and the cavity is sufficiently large to enable structural heterogeneity. We find that retinal occupies two distinct conformations in the dark state, contrary to most previous assumptions. The beta-ionone ring can rotate relative to the polyene chain, thereby populating both positively and negatively twisted 6-s-cis enantiomers. This result, while unexpected, strongly agrees with experimental solid-state (2)H NMR spectra. Correlation analysis identifies the residues most critical to controlling mobility of retinal; we find that Trp265 moves away from the ionone ring prior to any conformational transition. Our findings reinforce how molecular dynamics simulations can challenge conventional assumptions for interpreting experimental data, especially where existing models neglect conformational fluctuations.

Hetzer, M., Gutberiet, T., Brown, M. F., Camps, X., Vostrowsky, O., Schönberger, H., Hirsch, A., & Bayerl, T. M. (1999). Thermotropic Behavior of Lipophilic Derivatized [60]Fullerenes Studied by Deuterium NMR, X-ray Diffraction, and Microcalorimetry. Journal of Physical Chemistry A, 103(5), 637-642.

Abstract:

The dynamics, structure, and thermotropic behavior of a new class of lipophilic [60]fullerene (C60) derivatives, so-called lipo-fullerenes, have been studied by differential scanning calorimetry (DSC), deuterium nuclear magnetic resonance (2H NMR), and X-ray scattering. The lipo-fullerene studied consists of six pairs of perdeuterated C18 alkyl chains as substituents of six covalently attached methylene groups in octahedral sites. The symmetry of this highly symmetrical hexamethanofullerene is Th We find drastic changes of the molecular arrangement of the lipo-fullerenes induced by temperature. Heating the sample from 20 to 70 °C causes it to undergo two major structural transitions. At 55 °C we observe an exothermic transition from a low-temperature, hard sphere-like packing state of the molecules, with separation distances (6.1 nm) slightly above the maximum diameter of the molecules, to a condensed one. This latter state involves partial intercalation (interdigitation) of the alkyl chains belonging to adjacent molecules and is preceded by partial melting of the chains to accommodate sterically for the (exothermic) interdigitation. The latter allows denser packing with an average separation distance of 4.8 nm. At a temperature of 64 °C, an endothermic melting transition from the interdigitated to a viscous fluidlike state is observed, with an average separation distance of 2.8 nm. Cooling the sample from 70 °C causes a direct transition from the fluid into the low-temperature state with no interdigitation of the chains.

Brown, M. F., Chawla, U., Perera, S. M., & Struts, A. V. (2014). Role of Membrane Lipids in Activating G-Protein-Coupled Receptors. Biophysical Journal, 106, 434a.
Otten, D., Brown, M. F., & Beyer, K. (2000). Softening of membrane bilayers by detergents elucidated by deuterium NMR spectroscopy. Journal of Physical Chemistry B, 104(51), 12119-12129.

Abstract:

Material properties of lipid bilayers were studied on the mesoscopic scale using deuterium nuclear magnetic resonance spectroscopy. The fluid phase of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) was compared with DMPC containing a nonionic detergent as an additive. Order parameter profiles were obtained from the deuterium NMR spectra of DMPC having perdeuterated acyl chains (DMPC-J54). A reduction of the order parameters of DMPC-d54 in the presence of the detergent octaethyleneglycol-mono-/i-dodecyl ether (C12E8) was observed, consistent with an increased configurational freedom of the phospholipid acyl chains. Relaxation rates R1z(i) and R1Q(i) were measured and spectral densities Jm(mω0) where in = 1,2 were calculated from the combined relaxation results. Profiles of the observables, i.e., order parameters, relaxation rates, and spectral densities were interpreted within the framework of a new composite membrane deformation model, which describes characteristic properties of the membrane in terms of a continuum picture. According to this model, the influence of the nonionic detergent (C12E8) on the electroneutral DMPC membrane is to increase the membrane flexibility as manifested by the functional dependence of the R1z(i) and R1Q(i) rates, i.e., the dependence of the spectral densities on the corresponding profiles of the orientational order parameters |SCD(i)|. Within the theoretical framework the increased flexibility of the detergent-containing membranes corresponds to a decrease of the elastic constants for continuum (elastic) deformations of the membrane bilayer. In the case of splay fluctuations the elastic constant and the bilayer thickness are related to the macroscopic bending rigidity, which qualitatively yields a correspondence to studies of macroscopic bending fluctuations thus yielding support for the model. In general, these findings indicate a softening of the membrane bilayer by the presence of a nonionic detergent, which corresponds to a decrease of the elastic constants for continuum deformations of the membrane. © 2000 American Chemical Society.