Nathan J Cherrington

Nathan J Cherrington

Professor, Pharmacology and Toxicology
Associate Dean, Research and Graduate Studies - College of Pharmacy
Director, Southwest Environmental Health Science Center
Professor, Public Health
Professor, Clinical Translational Sciences
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-0219

Research Interest

Numerous drug-induced and environmental exposure-related toxicities are the result of inter-individual variation in the ADME processes of absorption, distribution, metabolism and elimination that control the fate of these compounds from the body. Alterations in these processes provide the mechanistic basis for individual variability in response to drugs and environmental exposures. A common perception is that variability in response is due to genetic polymorphisms within the drug metabolizing enzyme and transporter genes. While there are numerous examples of these differences that play a major role in the susceptibility of genetic subpopulations for specific toxicities, the potential for transient phenotypic conversion due to temporary environmental changes, such as inflammation and disease, are often overlooked.Due to the ensuing liver damage caused by the progressive stages of NAFLD, gene expression patterns can change dramatically resulting in a phenoconversion resembling genetic polymorphisms. Because the liver plays such a key role in the metabolism and disposition of xenobiotics, this temporary phenoconversion could lead to the inability of patients to properly metabolize and excrete drugs and environmental toxicants, increasing the risk of some adverse drug reactions and environmental toxicities.

Publications

Cherrington, N., Hardwick, R. N., Ferreira, D. W., More, V. R., Lake, A. D., Lu, Z., Manautou, J. E., Slitt, A. L., & Cherrington, N. J. (2013). Altered UDP-glucuronosyltransferase and sulfotransferase expression and function during progressive stages of human nonalcoholic fatty liver disease. Drug metabolism and disposition: the biological fate of chemicals, 41(3).

The UDP-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) represent major phase II drug-metabolizing enzymes that are also responsible for maintaining cellular homeostasis by metabolism of several endogenous molecules. Perturbations in the expression or function of these enzymes can lead to metabolic disorders and improper management of xenobiotics and endobiotics. Nonalcoholic fatty liver disease (NAFLD) represents a spectrum of liver damage ranging from steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. Because the liver plays a central role in the metabolism of xenobiotics, the purpose of the current study was to determine the effect of human NAFLD progression on the expression and function of UGTs and SULTs in normal, steatosis, NASH (fatty), and NASH (not fatty/cirrhosis) samples. We identified upregulation of UGT1A9, 2B10, and 3A1 and SULT1C4 mRNA in both stages of NASH, whereas UGT2A3, 2B15, and 2B28 and SULT1A1, 2B1, and 4A1 as well as 3'-phosphoadenosine-5'-phosphosulfate synthase 1 were increased in NASH (not fatty/cirrhosis) only. UGT1A9 and 1A6 and SULT1A1 and 2A1 protein levels were decreased in NASH; however, SULT1C4 was increased. Measurement of the glucuronidation and sulfonation of acetaminophen (APAP) revealed no alterations in glucuronidation; however, SULT activity was increased in steatosis compared with normal samples, but then decreased in NASH compared with steatosis. In conclusion, the expression of specific UGT and SULT isoforms appears to be differentially regulated, whereas sulfonation of APAP is disrupted during progression of NAFLD.

Kyriakides, M., Hardwick, R. N., Jin, Z., Goedken, M. J., Holmes, E., Cherrington, N. J., & Coen, M. (2014). Systems level metabolic phenotype of methotrexate administration in the context of non-alcoholic steatohepatitis in the rat. Toxicological sciences : an official journal of the Society of Toxicology, 142(1), 105-16.

Adverse drug reactions (ADRs) represent a significant clinical challenge with respect to patient morbidity and mortality. We investigated the hepatotoxicity and systems level metabolic phenotype of methotrexate (MTX) in the context of a prevalent liver disease; non-alcoholic steatohepatitis (NASH). A nuclear magnetic resonance spectroscopic-based metabonomic approach was employed to analyze the metabolic consequences of MTX (0, 10, 40, and 100 mg/kg) in the urine and liver of healthy rats (control diet) and in a model of NASH (methionine-choline deficient diet). Histopathological analysis confirmed baseline (0 mg/kg) liver necrosis, liver inflammation, and lipid accumulation in the NASH model. Administration of MTX (40 and 100 mg/kg) led to liver necrosis in the control cohort, whereas the NASH cohort also displayed biliary hyperplasia and liver fibrosis (100 mg/kg), providing evidence of the synergistic effect of MTX and NASH. The complementary hepatic and urinary metabolic phenotypes of the NASH model, at baseline, revealed perturbation of multiple metabolites associated with oxidative and energetic stress, and folate homeostasis. Administration of MTX in both diet cohorts showed dose-dependent metabolic consequences affecting gut microbial, energy, nucleobase, nucleoside, and folate metabolism. Furthermore, a unique panel of metabolic changes reflective of the synergistic effect of MTX and NASH was identified, including the elevation of hepatic phenylalanine, urocanate, acetate, and both urinary and hepatic formiminoglutamic acid. This systems level metabonomic analysis of the hepatotoxicity of MTX in the context of NASH provided novel mechanistic insight of potential wider clinical relevance for further understanding the role of liver pathology as a risk factor for ADRs.

Cherrington, N. J., Hartley, D. P., Li, N., Johnson, D. R., & Klaassen, C. D. (2002). Organ distribution of multidrug resistance proteins 1, 2, and 3 (Mrp1, 2, and 3) mRNA and hepatic induction of Mrp3 by constitutive androstane receptor activators in rats. The Journal of pharmacology and experimental therapeutics, 300(1), 97-104.

Many phase I and II microsomal enzyme inducers share common mechanisms of transcriptional activation and thus share a similar battery of genes that are coordinately regulated. Many phase II metabolites are thought to be transported out of cells by multidrug resistance proteins 1, 2, and 3 (Mrp1, 2, and 3). The purpose of this study was to determine the organ distribution of these three transporters in rat, and whether they are coordinately regulated with phase I and II drug-metabolizing enzymes. Therefore, Mrp1, 2, and 3 mRNAs were quantified using branched DNA signal amplification in multiple tissues and in tissues from rats that were treated with 18 chemicals thought to induce drug-metabolizing enzymes by six different transcription activation mechanisms [aryl-hydrocarbon receptor ligands, constitutive androstane receptor (CAR) activators, pregnane-X-receptor ligands, peroxisome proliferator activator receptor ligands, electrophile response element (EpRE) activators, and CYP2E1 inducers]. It was found that Mrp1 was expressed at a high level in kidney, lung, intestine, and brain, with low expression in liver. Mrp2 was highly expressed in liver and duodenum, and Mrp3 was highly expressed throughout the intestine but very low in liver. Microsomal enzyme inducers did not markedly increase the expression of Mrp1 or Mrp2. However, Mrp3 expression was significantly increased by each of the CAR activators and an EpRE activator in liver. Mrp3 was not similarly induced in kidney and large intestine, demonstrating that the coordinate inducibility of Mrp3 is specific to the liver. We conclude that rat hepatic Mrp3 is induced by CAR activators, thus enhancing the vectoral excretion of some phase II metabolites from the liver to the blood.

Dzierlenga, A. L., Clarke, J. D., Klein, D. M., Anumol, T., Snyder, S. A., Li, H., & Cherrington, N. J. (2016). Biliary Elimination of Pemetrexed Is Dependent on Mrp2 in Rats: Potential Mechanism of Variable Response in Nonalcoholic Steatohepatitis. The Journal of pharmacology and experimental therapeutics, 358(2), 246-53.

Hepatic multidrug resistance-associated protein 2 (MRP2) provides the biliary elimination pathway for many xenobiotics. Disruption of this pathway contributes to retention of these compounds and may ultimately lead to adverse drug reactions. MRP2 mislocalization from the canalicular membrane has been observed in nonalcoholic steatohepatitis (NASH), the late stage of nonalcoholic fatty liver disease, which is characterized by fat accumulation, oxidative stress, inflammation, and fibrosis. MRP2/Mrp2 mislocalization is observed in both human NASH and the rodent methionine and choline-deficient (MCD) diet model, but the extent to which it impacts overall transport capacity of MRP2 is unknown. Pemetrexed is an antifolate chemotherapeutic indicated for non-small cell lung cancer, yet its hepatobiliary elimination pathway has yet to be determined. The purpose of this study was to quantify the loss of Mrp2 function in NASH using an obligate Mrp2 transport substrate. To determine whether pemetrexed is an obligate Mrp2 substrate, its cumulative biliary elimination was compared between wild-type and Mrp2(-/-) rats. No pemetrexed was detected in the bile of Mrp2(-/-) rats, indicating pemetrexed is completely reliant on Mrp2 function for biliary elimination. Comparing the biliary elimination of pemetrexed between MCD and control animals identified a transporter-dependent decrease in biliary excretion of 60% in NASH. This study identifies Mrp2 as the exclusive biliary elimination mechanism for pemetrexed, making it a useful in vivo probe substrate for Mrp2 function, and quantifying the loss of function in NASH. This mechanistic feature may provide useful insight into the impact of NASH on interindividual variability in response to pemetrexed.

Clarke, J. D., Sharapova, T., Lake, A. D., Blomme, E., Maher, J., & Cherrington, N. J. (2013). Circulating microRNA 122 in the methionine- and choline-deficient mouse model of non-alcoholic steatohepatitis. Journal of Applied Toxicology.

Abstract:

Non-alcoholic steatohepatitis (NASH) is a progressive form of non-alcoholic fatty liver disease (NAFLD) and is a major cause of liver cirrhosis and hepatic failure. The methionine choline-deficient diet (MCD) is a frequently used hepatotoxicity animal model of NASH that induces hepatic transaminase (ALT, AST) elevations and hepatobiliary histological changes similar to those observed in human NASH. Liver-specific microRNA-122 (miR-122) has been shown as a key regulator of cholesterol and fatty acid metabolism in adult liver, and has recently been proposed as a sensitive and specific circulating biomarker of hepatic injury. The purpose of this study was to assess miR-122 serum levels in mice receiving an MCD diet for 0, 3, 7, 14, 28 and 56 days and compare the performance vs. routine clinical chemistry when benchmarked against the histopathological liver findings. MiR-122 levels were quantified in serum using RT-qPCR. Both miR-122 and ALT/AST levels were significantly elevated in serum at all timepoints. MiR-122 levels increased on average by 40-fold after 3 days of initiating the MCD diet, whereas ALT and AST changes were 4.8- and 3.3-fold, respectively. In general, miR-122 levels remained elevated across all time points, whereas the ALT/AST increases were less robust but correlated with the progressive severity of NASH as assessed by histopathology. In conclusion, serum levels of miR-122 can potentially be used as a sensitive biomarker for the early detection of hepatotoxicity and can aid in monitoring the extent of NAFLD-associated liver injury in mouse efficacy models. © 2013 John Wiley & Sons, Ltd.