Nathan J Cherrington

Nathan J Cherrington

Professor, Pharmacology and Toxicology
Associate Dean, Research and Graduate Studies - College of Pharmacy
Director, Southwest Environmental Health Science Center
Professor, Public Health
Professor, Clinical Translational Sciences
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-0219

Research Interest

Numerous drug-induced and environmental exposure-related toxicities are the result of inter-individual variation in the ADME processes of absorption, distribution, metabolism and elimination that control the fate of these compounds from the body. Alterations in these processes provide the mechanistic basis for individual variability in response to drugs and environmental exposures. A common perception is that variability in response is due to genetic polymorphisms within the drug metabolizing enzyme and transporter genes. While there are numerous examples of these differences that play a major role in the susceptibility of genetic subpopulations for specific toxicities, the potential for transient phenotypic conversion due to temporary environmental changes, such as inflammation and disease, are often overlooked.Due to the ensuing liver damage caused by the progressive stages of NAFLD, gene expression patterns can change dramatically resulting in a phenoconversion resembling genetic polymorphisms. Because the liver plays such a key role in the metabolism and disposition of xenobiotics, this temporary phenoconversion could lead to the inability of patients to properly metabolize and excrete drugs and environmental toxicants, increasing the risk of some adverse drug reactions and environmental toxicities.

Publications

Klein, D. M., Harding, M. C., Crowther, M. K., & Cherrington, N. J. (2017). Localization of nucleoside transporters in rat epididymis. Journal of biochemical and molecular toxicology, 31(8).

The epididymis relies on transporters for the secretion of nucleosides and influence the disposition of nucleoside analogs (NSA). Since these compounds can cross the blood-testis barrier (BTB), it is important to understand if the epididymis reabsorbs NSA drugs. The purpose of this study is to determine the localization of nucleoside transporters expressed within rat epididymis to demonstrate the potential of epididymal reabsorption. Using immunohistochemistry, we determined that equilibrative nucleoside transporter 1 (ENT1) is localized to the basolateral membrane of epithelial cells, ENT2 is expressed in the nucleus of the epithelium and CNT2 is expressed by basal cells. The expression pattern for these transporters suggests that nucleosides are able to access the epithelial cells of the epididymal duct via the blood, but not from the lumen. We did not find any evidence for a transepithelial reabsorption pathway indicating the NSA drugs that cross the BTB remain within the epididymis.

Cheng, Q., Taguchi, K., Aleksunes, L. M., Manautou, J. E., Cherrington, N. J., Yamamoto, M., & Slitt, A. L. (2016). Constitutive activation of nuclear factor-E2-related factor 2 induces biotransformation enzyme and transporter expression in livers of mice with hepatocyte-specific deletion of Kelch-like ECH-associated protein 1. Journal of biochemical and molecular toxicology, 25(5), 320-9.

Chemicals that activate nuclear factor-E2-related factor 2 (Nrf2) often increase multidrug-resistance-associated protein (Mrp) expression in liver. Hepatocyte-specific deletion of Kelch-like ECH-associated protein 1 (Keap1) activates Nrf2. Use of hepatocyte-specific Keap1 deletion represents a nonpharmacological method to determine whether constitutive Nrf2 activation upregulates liver transporter expression in vivo. The mRNA, protein expression, and localization of several biotransformation and transporters were determined in livers of wild-type and hepatocyte-specific Keap1-null mice. Sulfotransferase 2a1/2, NADP(H):quinone oxidoreductase 1, cytochrome P450 2b10, 3a11, and glutamate-cysteine ligase catalytic subunit expression were increased in livers of Keap1-null mice. Organic anion-transporting polypeptide 1a1 expression was nearly abolished, as compared to that detected in livers of wild-type mice. By contrast, Mrp 1-5 mRNA and protein levels were increased in Keap1-null mouse livers, with Mrp4 expression being more than 15-fold higher than wild types. In summary, Nrf2 has a significant role in affecting Oatp and Mrp expressions.

Das, P. C., Cao, Y., Cherrington, N., Hodgson, E., & Rose, R. L. (2006). Fipronil induces CYP isoforms and cytotoxicity in human hepatocytes. Chemico-biological interactions, 164(3), 200-14.

Recent studies have demonstrated the potential of pesticides to either inhibit or induce xenobiotic metabolizing enzymes in humans. Exposure of human hepatocytes to doses of fipronil (5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl) sulfinyl]-1H-pyrazole-3-carbonitrile) ranging from 0.1 to 25 microM resulted in a dose dependent increase in CYP1A1 mRNA expression (3.5 to approximately 55-fold) as measured by the branched DNA assay. In a similar manner, CYP3A4 mRNA expression was also induced (10-30-fold), although at the higher doses induction returned to near control levels. CYP2B6 and 3A5 were also induced by fipronil, although at lower levels (2-3-fold). Confirmation of bDNA results were sought through western blotting and/or enzyme activity assays. Western blots using CYP3A4 antibody demonstrated a dose responsive increase from 0.5 to 1 microM followed by decreasing responses at higher concentrations. Similar increases and decreases were observed in CYP3A4-specific activity levels as measured using 6beta-hydroxytestosterone formation following incubation with testosterone. Likewise, activity levels for a CYP1A1-specific substrate, luciferin CEE, demonstrated that CYP1A1 enzyme activities were maximally induced by 1 microM fipronil followed by dramatically declining activity measurements at 10 and 25 microM. Cytotoxic effects of fipronil and fipronil sulfone were examined using the adenylate kinase and the trypan blue exclusion assays in HepG2 cells and human hepatocytes. The results indicate both that HepG2 cells and primary human hepatocytes are sensitive to the cytotoxic effects of fipronil. The maximum induction of adenylate kinase was ca. 3-fold greater than the respective controls in HepG2 and 6-10-fold in the case of primary hepatocytes. A significant time- and dose-dependent induction of adenylate kinase activity in HepG2 cells was noted from 0.1 to 12.5 microM fipronil followed by decreasing activities at 25 and 50 microM. For fipronil sulfone, cytotoxic effects increased throughout the dose range. The trypan blue assay indicated that cytotoxic effects contributing to an increase of greater than 10% of control values was indicated at doses above 12.5 microM. However, fipronil sulfone induced cytotoxic effects at lower doses. The possibility that cytotoxic effects were due to apoptosis was indicated by significant time- and dose-dependent induction of caspase-3/7 activity in both HepG2 cells and human hepatocytes. Fipronil mediated activation of caspase-3/7 in concurrence with compromised ATP production and viability are attributed to apoptotic cell death.

Canet, M. J., & Cherrington, N. J. (2014). Drug disposition alterations in liver disease: extrahepatic effects in cholestasis and nonalcoholic steatohepatitis. Expert opinion on drug metabolism & toxicology, 10(9), 1209-19.

The pharmacokinetics (PK) of drugs and xenobiotics, namely pharmaceuticals, is influenced by a host of factors that include genetics, physiological factors and environmental stressors. The importance of disease on the disposition of xenobiotics has been increasingly recognized among medical professionals for alterations in key enzymes and membrane transporters that influence drug disposition and contribute to the development of adverse drug reactions.

Maher, J. M., Cherrington, N. J., Slitt, A. L., & Klaassen, C. D. (2006). Tissue distribution and induction of the rat multidrug resistance-associated proteins 5 and 6. Life sciences, 78(19), 2219-25.

Multidrug resistance-associated proteins (Mrps) are ATP-dependent transporters which transport a wide variety of anionic and cationic compounds. The purpose of this study was to determine the tissue distribution of Mrp5 and 6 in male and female Sprague-Dawley rats in various tissues, and to investigate whether the expression is altered by cholestasis or administration of microsomal enzyme inducers (MEIs). These MEIs activate six different transcriptionally-mediated pathways, and their effects on Mrp5 and Mrp6 expression were determined. The effects of bile-duct ligation, a cholestasis model, on Mrp5 and 6 expression in male rats were quantified. Mrp5 had marked expression in adrenal gland, and moderate expression in cerebral cortex, cerebellum, and stomach. The MEIs polychlorinated biphenyl (PCB)126, phenobarbital, and PCB99 slightly repressed Mrp5, but no single class of receptor agonists induced or repressed Mrp5. Bile-duct ligation tended to increase Mrp5 expression, but was not statistically significant at a 3 day timepoint. Mrp6 expression was highest in intestine, liver, and kidney. Mrp6 was slightly repressed by phenobarbital, dexamethasone, and isoniazid, but no one class of receptor agonists induced or repressed Mrp6, and expression was also unchanged bile-duct ligation. In conclusion, Mrp5 in rats is most highly expressed in the adrenal gland, whereas Mrp6 is mainly expressed in excretory organs (liver, intestine, and kidney), suggesting markedly different functions. Hepatic mRNA levels of Mrp5 or Mrp6 do not seem to be coordinately regulated along with Phase I enzymes via receptor-mediated pathways, and are not part of the hepatoprotective upregulation of basolateral transporters that occurs during cholestasis.