Elizabeth Connick
Division Chief, Infectious Disease
Professor, BIO5 Institute
Professor, Immunobiology
Professor, Medicine
Primary Department
Department Affiliations
(520) 626-6887
Research Interest
My laboratory focuses on the immunopathogenesis of HIV infection, particularly strategies employed by the virus to evade cellular immunity. Because most HIV replication occurs in secondary lymphoid tissues, much of our work has been focused on understanding the biology of HIV replication within lymphoid tissues and unique features of the host immune response at those sites. Other areas of interest include investigation of sex differences as well as factors that promote accelerated cardiovascular disease in HIV-infected individuals.

Publications

Connick, E., Melanson, E. L., Ritchie, H. K., Dear, T. B., Catenacci, V., Shea, K., Moehlman, T. M., Stothard, E. R., Higgins, J., McHill, A. W., & Wright Jr., K. P. (2017). Daytime Bright Light Exposure, Metabolism, and Individual Differences in Wake and Sleep Energy Expenditure During Circadian Entrainment and Misalignment.. Neurobiology of Sleep and Circadian Rhythms.
Li, S., Folkvord, J. M., Rakasz, E. G., Abdelaal, H. M., Wagstaff, R. K., Kovacs, K. J., Kim, H. O., Sawahata, R., MaWhinney, S., Masopust, D., Connick, E., & Skinner, P. J. (2016). Simian Immunodeficiency Virus-Producing Cells in Follicles Are Partially Suppressed by CD8+ Cells In Vivo. Journal of virology, 90(24), 11168-11180.

Human immunodeficiency virus (HIV)- and simian immunodeficiency virus (SIV)-specific CD8(+) T cells are typically largely excluded from lymphoid B cell follicles, where HIV- and SIV-producing cells are most highly concentrated, indicating that B cell follicles are somewhat of an immunoprivileged site. To gain insights into virus-specific follicular CD8(+) T cells, we determined the location and phenotype of follicular SIV-specific CD8(+) T cells in situ, the local relationship of these cells to Foxp3(+) cells, and the effects of CD8 depletion on levels of follicular SIV-producing cells in chronically SIV-infected rhesus macaques. We found that follicular SIV-specific CD8(+) T cells were able to migrate throughout follicular areas, including germinal centers. Many expressed PD-1, indicating that they may have been exhausted. A small subset was in direct contact with and likely inhibited by Foxp3(+) cells, and a few were themselves Foxp3(+) In addition, subsets of follicular SIV-specific CD8(+) T cells expressed low to medium levels of perforin, and subsets were activated and proliferating. Importantly, after CD8 depletion, the number of SIV-producing cells increased in B cell follicles and extrafollicular areas, suggesting that follicular and extrafollicular CD8(+) T cells have a suppressive effect on SIV replication. Taken together, these results suggest that during chronic SIV infection, despite high levels of exhaustion and likely inhibition by Foxp3(+) cells, a subset of follicular SIV-specific CD8(+) T cells are functional and suppress viral replication in vivo These findings support HIV cure strategies that augment functional follicular virus-specific CD8(+) T cells to enhance viral control.

Miles, B., Miller, S., & Connick, E. (2016). CD4 T Follicular Helper and Regulatory Cell Dynamics and Function in HIV Infection. Frontiers in Immunology, https://doi.org/10.3389/fimmu.2016.00659. doi:https://doi.org/10.3389/fimmu.2016.00659
Kohler, S. L., Pham, M. N., Folkvord, J. M., Arends, T., Miller, S. M., Miles, B., Meditz, A. L., McCarter, M., Levy, D. N., & Connick, E. (2016). Germinal Center T Follicular Helper Cells Are Highly Permissive to HIV-1 and Alter Their Phenotype during Virus Replication. Journal of immunology (Baltimore, Md. : 1950), 196(6), 2711-22.

HIV-1 replication is concentrated within CD4(+) T cells in B cell follicles of secondary lymphoid tissues during asymptomatic disease. Limited data suggest that a subset of T follicular helper cells (TFH) within germinal centers (GC) is highly permissive to HIV-1. Whether GC TFH are the major HIV-1 virus-producing cells in vivo has not been established. In this study, we investigated TFH permissivity to HIV-1 ex vivo by spinoculating and culturing tonsil cells with HIV-1 GFP reporter viruses. Using flow cytometry, higher percentages of GC TFH (CXCR5(high)PD-1(high)) and CXCR5(+)programmed cell death-1 (PD-1)(low) cells were GFP(+) than non-GC TFH (CXCR5(+)PD-1(intermediate)) or extrafollicular (EF) (CXCR5(-)) cells. When sorted prior to spinoculation, however, GC TFH were substantially more permissive than CXCR5(+)PD-1(low) or EF cells, suggesting that many GC TFH transition to a CXCR5(+)PD-1(low) phenotype during productive infection. In situ hybridization on inguinal lymph node sections from untreated HIV-1-infected individuals without AIDS revealed higher frequencies of HIV-1 RNA(+) cells in GC than non-GC regions of follicle or EF regions. Superinfection of HIV-1-infected individuals' lymph node cells with GFP reporter virus confirmed the permissivity of follicular cells ex vivo. Lymph node immunostaining revealed 96% of CXCR5(+)CD4(+) cells were located in follicles. Within sorted lymph node cells from four HIV-infected individuals, CXCR5(+) subsets harbored 11-66-fold more HIV-1 RNA than CXCR5(-) subsets, as determined by RT PCR. Thus, GC TFH are highly permissive to HIV-1, but downregulate PD-1 and, to a lesser extent, CXCR5 during HIV-1 replication. These data further implicate GC TFH as the major HIV-1-producing cells in chronic asymptomatic HIV-1 infection.

Connick, E., Folkvord, J. M., Lind, K. T., Rakasz, E. G., Miles, B., Wilson, N. A., Santiago, M. L., Schmitt, K., Stephens, E. B., Kim, H. O., Wagstaff, R., Li, S., Abdelaal, H. M., Kemp, N., Watkins, D. I., MaWhinney, S., & Skinner, P. J. (2014). Compartmentalization of simian immunodeficiency virus replication within secondary lymphoid tissues of rhesus macaques is linked to disease stage and inversely related to localization of virus-specific CTL. Journal of immunology (Baltimore, Md. : 1950), 193(11), 5613-25.

We previously demonstrated that HIV replication is concentrated in lymph node B cell follicles during chronic infection and that HIV-specific CTL fail to accumulate in large numbers at those sites. It is unknown whether these observations can be generalized to other secondary lymphoid tissues or whether virus compartmentalization occurs in the absence of CTL. We evaluated these questions in SIVmac239-infected rhesus macaques by quantifying SIV RNA(+) cells and SIV-specific CTL in situ in spleen, lymph nodes, and intestinal tissues obtained at several stages of infection. During chronic asymptomatic infection prior to simian AIDS, SIV-producing cells were more concentrated in follicular (F) compared with extrafollicular (EF) regions of secondary lymphoid tissues. At day 14 of infection, when CTL have minimal impact on virus replication, there was no compartmentalization of SIV-producing cells. Virus compartmentalization was diminished in animals with simian AIDS, which often have low-frequency CTL responses. SIV-specific CTL were consistently more concentrated within EF regions of lymph node and spleen in chronically infected animals regardless of epitope specificity. Frequencies of SIV-specific CTL within F and EF compartments predicted SIV RNA(+) cells within these compartments in a mixed model. Few SIV-specific CTL expressed the F homing molecule CXCR5 in the absence of the EF retention molecule CCR7, possibly accounting for the paucity of F CTL. These findings bolster the hypothesis that B cell follicles are immune privileged sites and suggest that strategies to augment CTL in B cell follicles could lead to improved viral control and possibly a functional cure for HIV infection.