Eric H Lyons

Eric H Lyons

Associate Professor, Plant Science
Associate Professor, Agricultural-Biosystems Engineering
Advisor, CALS' Office of the Assoc Dean - Research for Cyber Initiatives in Agricultural / Life - Vet Science
Associate Professor, Genetics - GIDP
Associate Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-5070

Research Interest

Eric Lyons, PhD is an assistant professor at the University of Arizona School of Plant Sciences. Dr. Lyons is internationally known for his work in understanding the evolution, structure, and dynamics of genomes. Core to his research activities is the development of software systems for managing and analyzing genomic data and cyberinfrastructure for the life sciences.Dr. Lyons has published over 30 original research papers and 5 book chapters, many in collaboration with investigators from around the world. He is a frequent presenter at national and international meetings, and has been invited to teach workshops on the analysis of genomic data to plant, vertebrate, invertebrate, microbe, and health researchers.Prior to joining the faculty in the School of Plant Sciences, Dr. Lyons worked with the iPlant Collaborative developing cyberinfrastructure, and managing its scientific activities. In addition, he spent five years working in industry at biotech, pharmaceutical, and software companies. Dr. Lyons’ core software system for managing and analyzing genomic data is called CoGe, and is available for use at http://genomevolution.org

Publications

Albert, V. A., Barbazuk, W. B., Der, J. P., Leebens-Mack, J., Ma, H., Palmer, J. D., Rounsley, S., Sankoff, D., Schuster, S. C., Soltis, D. E., & others, . (2013). The Amborella Genome and the Evolution of Flowering Plants. Science, 342(6165), 1241089.
Wu, Y., Sheehan, P. D., Males, J. R., Close, L. M., Morzinski, K. M., Teske, J. K., Haug-Baltzell, A., Merchant, N., & Lyons, E. (2017). An ALMA and MagAO study of the substellar companion GQ Lup B. The Astrophysical Journal, 836(2), 223.
Zheng, C., Swenson, K., Lyons, E., & Sankoff, D. (2011). OMG! Orthologs in Multiple Genomes - Competing graph-theoretical formulations. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6833 LNBI, 364-375.

Abstract:

From the set of all pairwise homologies, weighted by sequence similarities, among a set of genomes, we seek disjoint orthology sets of genes, in which each element is orthogonal to all other genes (on a different genome) in the same set. In a graph-theoretical formulation, where genes are vertices and weighted edges represent homologies, we suggest three criteria, with three different biological motivations, for evaluating the partition of genes produced by deletion of a subset of edges: i) minimum weight edge removal, ii) minimum degree-zero vertex creation, and iii) maximum number of edges in the transitive closure of the graph after edge deletion. For each of the problems, all either proved or conjectured to be NP-hard, we suggest approximate and heuristic algorithms of finding orthology sets satisfying the criteria, and show how to incorporate genomes that have a whole genome duplication event in their immediate lineage. We apply this to ten flowering plant genomes, involving 160,000 different genes in given pairwise homologies. We evaluate the results in a number of ways and recommend criterion iii) as best suited to applications to multiple gene order alignment. © 2011 Springer-Verlag.

Haug-Baltzell, A., Stephens, S. A., Davey, S., Scheidegger, C. E., & Lyons, E. (2017). SynMap2 and SynMap3D: web-based whole-genome synteny browsers. Bioinformatics, 33(14), 2197--2198.
Zheng, C., Chen, E., Albert, V. A., Lyons, E., & Sankoff, D. (2013). Ancient eudicot hexaploidy meets ancestral eurosid gene order. BMC Genomics, 14(Suppl 7), S3.