Parker B Antin

Parker B Antin

Associate Dean, Research-Agriculture and Life Sciences
Associate Vice President for Research, Agriculture - Life and Veterinary Sciences / Cooperative Extension
Professor, Cellular and Molecular Medicine
Professor, Molecular and Cellular Biology
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 621-5242

Research Interest

Parker Antin is Professor of Cellular and Molecular Medicine in the College of Medicine, Associate Vice President for Research for the Division of Agriculture, Life and Veterinary Medicine, and Cooperative Extension, and Associate Dean for Research in the College of Agriculture and Life Sciences. In his positions of Associate Vice President and Associate Dean, he is responsible for developing and implementing the research vision for the Colleges of Agriculture and Life Sciences and the College of Veterinary Medicine, with total research expenditures of approximately $65M per year. His responsibilities include oversight of research strategy and portfolio investment, grants and contracts pre award services, research intensive faculty hires and retentions, research communication and marketing, research facilities, and research compliance services. In collaboration with Division and College leadership teams, he has shared responsibilities for philanthropy, budgets and information technology. Dr. Antin is a vertebrate developmental biologist whose research is concerned with the molecular mechanisms of embryonic development. His research has been supported by NIH, NSF, NASA, USDA, and the DOE, as well as several private foundations including the American Heart Association and the Muscular Dystrophy Association, He is the Principal Investigator of CyVerse, a $115M NSF funded cyberinfrastructure project whose mission is to design, deploy and expand a national cyberinfrastructure for life sciences research, and train scientists in its use (http://cyverse.org). With 65,000 users worldwide, CyVerse enables scientists to manage and store data and experiments, access high-performance computing, and share data and results with colleagues and the public. Dr. Antin is also active nationally in the areas of science policy and funding for science. He is a past President of the Federation of Societies for Experimental Biology (FASEB), an umbrella science policy and advocacy organization representing 32 scientific societies and 135,000 scientists. His continued work with FASEB, along with his duties as Associate Vice President and Associate Dean for Research, and CyVerse PI, brings him frequently to Washington, DC, where he advocates for support of science and science policy positions that enhance the scientific enterprise.

Publications

Lopes, L., Konieczka, J., Foulk, V., & Antin, P. (2010). Network Elucidation Template: A framework for human-guided network inference. Computers and Industrial Engineering, 58(4), 680-690.

Abstract:

Network elucidation is the problem of inferring all parameters of a network from a subset of those parameters. We introduce the Network Elucidation Template (NET), which provides a framework upon which algorithms for such problems can be built. NET algorithms take advantage of novel methods for collaboration between human operators and computers. They use visualizations of the peculiar structures that appear in optimal solutions to aid the parameter search. By design, NET is at a high enough level of abstraction to describe a class of algorithms, as opposed to a single algorithm. Given a problem, and the structure of that problem, an effective instantiation of the template into an algorithm can be created. We describe one such instantiation: using a network flow framework to implement a NET algorithm for uncovering smuggling networks; as well as the general template. © 2010 Elsevier Ltd. All rights reserved.

Rudy, D. E., Yatskievych, T. A., Antin, P. B., & Gregorio, C. C. (2001). Assembly of thick, thin, and titin filaments in chick precardiac explants. Developmental Dynamics, 221(1), 61-71.
BIO5 Collaborators
Parker B Antin, Carol C Gregorio

PMID: 11357194;Abstract:

De novo cardiac myofibril assembly has been difficult to study due to the lack of available cell culture models that clearly and accurately reflect heart muscle development in vivo. However, within precardiac chick embryo ex-plants, premyocardial cells differentiate and commence beating in a temporal pattern that corresponds closely with myocyte differentiation in the embryo. Immunofluorescence staining of explants followed by confocal microscopy revealed that distinct stages of cardiac myofibril assembly, ranging from the earliest detection of sarcomeric proteins to the late appearance of mature myofibrils, were consistently recognized in precardiac cultures. Assembly events involved in the early formation of sarcomeres were clearly visualized and accurately reflected observations described by others during chick heart muscle development. Specifically, the early colocalization of α-actinin and titin dots was observed near the cell periphery representing I-Z -I-like complex formation. Myosin-containing thick filaments assembled independently of actin-containing thin filaments and appeared centered within sarcomeres when titin was also linearly aligned at or near cell borders. An N-terminal epitope of titin was detected earlier than a C-terminal epitope; however, both epitopes were observed to alternate near the cell periphery concomitant with the earliest formation of myofibrils. Although vascular actin was detected within cells during early assembly stages, cardiac actin predominated as the major actin isoform in mature thin filaments. Well-aligned thin filaments were also observed in the absence of organized staining for tropomodulin at thin filament pointed ends, suggesting that tropomodulin is not required to define thin filament lengths. Based on these findings, we conclude that the use of the avian precardiac explant system accurately allows for direct investigation of the mechanisms regulating de novo cardiac myofibrillogenesis. © 2001 Wiley-Liss, Inc.

Baker, R. K., Vanderboom, A. K., Bell, G. W., & Antin, P. B. (2001). Expression of the receptor tyrosine kinase gene EphB3 during early stages of chick embryo development. Mechanisms of Development, 104(1-2), 129-132.

PMID: 11404090;Abstract:

The expression pattern of the receptor tyrosine kinase gene EphB3 was examined during the early stages of chick embryogenesis, and is described in this report. In the gastrula, EphB3 is expressed in epiblast cells adjacent to and entering the anterior portion of the primitive streak; expression is extinguished once cells have ingressed. At headfold stages, EphB3 is strongly transcribed in the floor of the foregut and in anterior lateral endoderm, and is expressed in the subjacent cardiogenic mesoderm. EphB3 is transiently expressed in the lateral ectoderm, neural tube, and neural crest during these stages. Later neural expression is localized to the mesencephalon. In the somitic mesoderm, EphB3 is initially expressed in the sclerotome, but later is expressed predominantly in the dermatome. Prominent expression is also detected in the developing heart, liver, posterior ventral limb bud mesenchyme, pharyngeal arches, and head mesenchyme. Copyright © 2001 Elsevier Science Ireland Ltd.

Cole, L., Anderson, M., Antin, P. B., & Limesand, S. W. (2009). One process for pancreatic β-cell coalescence into islets involves an epithelial-mesenchymal transition. Journal of Endocrinology, 203(1), 19-31.

PMID: 19608613;PMCID: PMC3071757;Abstract:

Islet replacement is a promising therapy for treating diabetes mellitus, but the supply of donor tissue for transplantation is limited. To overcome this limitation, endocrine tissue can be expanded, but this requires an understanding of normal developmental processes that regulate islet formation. In this study, we compare pancreas development in sheep and human, and provide evidence that an epithelial-mesenchymal transition (EMT) is involved in β-cell differentiation and islet formation. Transcription factors know to regulate pancreas formation, pancreatic duodenal homeobox factor 1, neurogenin 3, NKX2-2, and NKX6-1, which were expressed in the appropriate spatial and temporal pattern to coordinate pancreatic bud outgrowth and direct endocrine cell specifi-cation in sheep. Immunofluorescence staining of the developing pancreas was used to co-localize insulin and epithelial proteins (cytokeratin, E-cadherin, and β-catenin) or insulin and a mesenchymal protein (vimentin). In sheep, individual β-cells become insulin-positive in the progenitor epithelium, then lose epithelial characteristics, and migrate out of the epithelial layer to form islets. As β-cells exit the epithelial progenitor cell layer, they acquire mesenchymal characteristics, shown by their acquisition of vimentin. In situ hybridization expression analysis of the SNAIL family members of transcriptional repressors (SNAIL1, -2, and -3; listed as SNAI1, -2, -3 in the HUGO Database) showed that each of the SNAIL genes was expressed in the ductal epithelium during development, and SNAIL-1 and -2 were co-expressed with insulin. Our findings provide strong evidence that the movement of β-cells from the pancreatic ductal epithelium involves an EMT. © 2009 Society for Endocrinology.

Darnell, D. K., Stanislaw, S., Kaur, S., & Antin, P. B. (2010). Whole mount in situ hybridization detection of mRNAs using short LNA containing DNA oligonucleotide probes. RNA, 16(3), 632-637.

PMID: 20086052;PMCID: PMC2822927;Abstract:

In situ hybridization is widely used to visualize transcribed sequences in embryos, tissues, and cells. For whole mount detection of mRNAs in embryos, hybridization with an antisense RNA probe is followed by visual or fluorescence detection of target mRNAs. A limitation of this approach is that a cDNA template of the target RNA must be obtained in order to generate the antisense RNA probe. Here we investigate the use of short (12-24 nucleotides) locked nucleic acid (LNA) containing DNA probes for whole mount in situ hybridization detection of mRNAs. Following extensive protocol optimization, we show that LNA probes can be used to localize several mRNAs of varying abundances in chicken embryos. LNA probes also detected alternatively spliced exons that are processed in a tissue specific manner. The use of LNA probes for whole mount in situ detection of mRNAs will enable in silico design and chemical synthesis and will expand the general use of in situ hybridization for studies of transcriptional regulation and alternative splicing. Published by Cold Spring Harbor Laboratory Press. Copyright © 2010 RNA Society.