Parker B Antin

Parker B Antin

Associate Dean, Research-Agriculture and Life Sciences
Associate Vice President for Research, Agriculture - Life and Veterinary Sciences / Cooperative Extension
Professor, Cellular and Molecular Medicine
Professor, Molecular and Cellular Biology
Professor, BIO5 Institute
Primary Department
Department Affiliations
(520) 621-5242

Research Interest

Parker Antin is Professor of Cellular and Molecular Medicine in the College of Medicine, Associate Vice President for Research for the Division of Agriculture, Life and Veterinary Medicine, and Cooperative Extension, and Associate Dean for Research in the College of Agriculture and Life Sciences. In his positions of Associate Vice President and Associate Dean, he is responsible for developing and implementing the research vision for the Colleges of Agriculture and Life Sciences and the College of Veterinary Medicine, with total research expenditures of approximately $65M per year. His responsibilities include oversight of research strategy and portfolio investment, grants and contracts pre award services, research intensive faculty hires and retentions, research communication and marketing, research facilities, and research compliance services. In collaboration with Division and College leadership teams, he has shared responsibilities for philanthropy, budgets and information technology. Dr. Antin is a vertebrate developmental biologist whose research is concerned with the molecular mechanisms of embryonic development. His research has been supported by NIH, NSF, NASA, USDA, and the DOE, as well as several private foundations including the American Heart Association and the Muscular Dystrophy Association, He is the Principal Investigator of CyVerse, a $115M NSF funded cyberinfrastructure project whose mission is to design, deploy and expand a national cyberinfrastructure for life sciences research, and train scientists in its use ( With 65,000 users worldwide, CyVerse enables scientists to manage and store data and experiments, access high-performance computing, and share data and results with colleagues and the public. Dr. Antin is also active nationally in the areas of science policy and funding for science. He is a past President of the Federation of Societies for Experimental Biology (FASEB), an umbrella science policy and advocacy organization representing 32 scientific societies and 135,000 scientists. His continued work with FASEB, along with his duties as Associate Vice President and Associate Dean for Research, and CyVerse PI, brings him frequently to Washington, DC, where he advocates for support of science and science policy positions that enhance the scientific enterprise.


Holtzer, H., Forry-Schaudies, S., Dlugosz, A., Antin, P., & Dubyak, G. (1985). Interactions between IFs, microtubules, and myofibrils in fibrogenic and myogenic cells.. Annals of the New York Academy of Sciences, 455, 106-125.
Klewer, S. E., Yatskievych, T., Pogreba, K., Stevens, M. V., Antin, P. B., & Camenisch, T. D. (2006). Has2 expression in heart forming regions is independent of BMP signaling. Gene Expression Patterns, 6(5), 462-470.

PMID: 16458617;Abstract:

Heart septation and valve malformations constitute the most common birth defects. These cardiac structures arise from the endocardial cushions through dynamic interactions between cells and the extracellular matrix (cardiac jelly). Targeted deletion of the hyaluronan synthase-2 (Has2) gene in mice results in an absence of cardiac jelly and endocardial cushions, a loss of vascular integrity, and embryonic death at E9.5. Despite the requirements for Has2 and its synthetic product hyaluronan (HA) in the developing cardiovascular system, little is known about the normal expression pattern of Has2 or the factors regulating Has2 gene transcription during development. Bmp signaling is an important regulator of cardiac myogenesis, and is also important for endocardial cushion formation. The current study defines the embryonic expression pattern of Has2 and explores the regulation of Has2 gene expression by Bmp signaling. In situ hybridization studies demonstrate dynamic Has2 expression patterns during myocardial cell development and cardiac tube formation, formation of the cardiac endocardial cushions, and cushion invasion by valve primordial cells. Despite overlapping regional expression of Bmp2 in the late gastrula anterior lateral endoderm and Has2 in the adjacent cardiogenic mesoderm, application of noggin-expressing CHO cells beneath the endoderm failed to perturb normal Has2 expression. Thus, in contrast to many genes expressed in the heart forming region, regulation of Has2 in the cardiogenic mesoderm is independent of Bmp signaling. © 2005 Elsevier B.V. All rights reserved.

Khan, P., Cooley, J. R., Zeltzer, S. L., Yatskievych, T. A., & Antin, P. B. (2016). Gastrulation EMT is Independent of Epithelial Cadherin Downregulation. PLoS One, 11(4). doi:10.1371/journal.pone.0153591
Ason, B., Darnell, D. K., Wittbrodt, B., Berezikov, E., Kloosterman, W. P., Wittbrodt, J., Antin, P. B., & H., R. (2006). Differences in vertebrate microRNA expression. Proceedings of the National Academy of Sciences of the United States of America, 103(39), 14385-14389.

PMID: 16983084;PMCID: PMC1599972;Abstract:

MicroRNAs (miRNAs) attenuate gene expression by means of translational inhibition and mRNA degradation. They are abundant, highly conserved, and predicted to regulate a large number of transcripts. Several hundred miRNA classes are known, and many are associated with cell proliferation and differentiation. Many exhibit tissue-specific expression, which aids in evaluating their functions, and it has been assumed that their high level of sequence conservation implies a high level of expression conservation. A limited amount of data supports this, although discrepancies do exist. By comparing the expression of ≈100 miRNAs in medaka and chicken with existing data for zebrafish and mouse, we conclude that the timing and location of miRNA expression is not strictly conserved. In some instances, differences in expression are associated with changes in miRNA copy number, genomic context, or both between species. Variation in miRNA expression is more pronounced the greater the differences in physiology, and it is enticing to speculate that changes in miRNA expression may play a role in shaping the physiological differences produced during animal development. © 2006 by The National Academy of Sciences of the USA.

Holtzer, H., Biehl, J., Antin, P., Tokunaka, S., Sasse, J., Pacifici, M., & Holtzer, S. (1983). Quantal and proliferative cell cycles: how lineages generate cell diversity and maintain fidelity.. Progress in clinical and biological research, 134, 213-227.

PMID: 6664999;Abstract:

There are no known differences between the mechanisms that generate diverse differentiation programs in a mosaic embryo such as Caenorhabdites elegans or in a regulative embryo such as a chick. Transit through an invariant sequence of compartments in a lineage is obligatory for a given precursor cell 1) to inherit its differentiation program from its mother, and 2) to transmit to its daughters, by way of a predetermined binary decision, a new differentiation program. The inheritability of a differentiation program must be encoded in a structural molecule. We postulate that during an S period of a quantal cell cycle, chromosomal structures are so altered that a network of genes that could not be transcribed in the mother becomes available for transcription in the daughters. We do not view as a likely possibility the traditional notion that cell-cell or cell-matrix interactions instruct or commit blank, naive cells to transform into cells with unique differentiation programs. From this perspective, we have initiated experiments to determine the minimal rounds of DNA synthesis, following fertilization, that are required to generate founder cells for several major lineages in the chick. Somewhere between the 15th and 18th generations after fertilization erythrogenic hematocytoblasts that are cytokeratin-positive and vimentin- and hemoglobin-negative undergo a quantal cell cycle. Their daughters are cytokeratin-negative and vimentin- and hemoglobin-positive. DNA synthesis, but not cytokinesis, is an obligatory requirement for this switch in differentiation programs. Essentially similar findings are presented for cells in the cardiogenic, neurogenic, melanogenic, and endothelial lineages. There is no evidence that cell-cell or cell-matrix interactions are required for this diversification. Such interactions, however, may be required for the large number of proliferative cell cycles within particular compartments of particular lineages that are characteristic of all growing or expanding systems. With respect to classical "CFU cells" it is of interest that definitive white blood cells have not yet been identified in these cultures. Lastly, the high ratio of primitive red blood cells to non-red blood cells in the first 40 hours of culture is consistent with the notion that the majority of all cells present in the blastodisc at these early stages are in fact already committed to a unipotent erythrogenic lineage [5, 18, 23, 44, 45]. The issue of changing ratios of cells within compartments of a lineage, as well as of cells in different lineages, is much neglected in consideration of (a) normal embryogenesis, (b) cell-renewal in mature organisms and, particularly,