Jennifer Kehlet Barton

Jennifer Kehlet Barton

Director, BIO5 Institute
Thomas R. Brown Distinguished Chair in Biomedical Engineering
Professor, Agricultural-Biosystems Engineering
Professor, Biomedical Engineering
Professor, Electrical and Computer Engineering
Professor, Medical Imaging
Professor, Optical Sciences
Professor, Cancer Biology - GIDP
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 626-0314

Work Summary

I develop new optical imaging devices that can detect cancer at the earliest stage. Optics has the resolution and sensitivity to find these small, curable lesions, and we design the endoscope that provide access to organs inside the body. .

Research Interest

Jennifer Barton, Ph.D. is known for her development of miniature endoscopes that combine multiple optical imaging techniques, particularly optical coherence tomography and fluorescence spectroscopy. She evaluates the suitability of these endoscopic techniques for detecting early cancer development in patients and pre-clinical models. She has a particular interest in the early detection of ovarian cancer, the most deadly gynecological malignancy. Additionally, her research into light-tissue interaction and dynamic optical properties of blood laid the groundwork for a novel therapeutic laser to treat disorders of the skin’s blood vessels. She has published over 100 peer-reviewed journal papers in these research areas. She is currently Professor of Biomedical Engineering, Electrical and Computer Engineering, Optical Sciences, Agriculture-Biosystems Engineering, and Medical Imaging at the University of Arizona. She has served as department head of Biomedical Engineering, Associate Vice President for Research, and is currently Director of the BIO5 Institute, a collaborative research institute dedicated to solving complex biology-based problems affecting humanity. She is a fellow of SPIE – the International Optics Society, and a fellow of the American Institute for Medical and Biological Engineering. Keywords: bioimaging, biomedical optics, biomedical engineering, bioengineering, cancer, endoscopes

Publications

Luo, Y., Arauz, L. J., Castillo, J. E., Barton, J. K., & Kostuk, R. K. (2007). Parallel optical coherence tomography system. Applied optics, 46(34), 8291-7.

We present the design and procedures for implementing a parallel optical coherence tomography (POCT) imaging system that can be adapted to an endoscopic format. The POCT system consists of a single mode fiber (SMF) array with multiple reduced diameter (15 microm) SMFs in the sample arm with 15 microm center spacing between fibers. The size of the array determines the size of the transverse imaging field. Electronic scanning eliminates the need for mechanically scanning in the lateral direction. Experimental image data obtained with this system show the capability for parallel axial scan acquisition with lateral resolution comparable to mechanically scanned optical coherence tomography systems.

Davidson, B. R., & Barton, J. K. (2009). Automated contact lens measurement using optical coherence tomography. ADVANCED BIOMEDICAL AND CLINICAL DIAGNOSTIC SYSTEMS VII, 7169.
Howlett, I. D., Han, W., Gordon, M., Rice, P., Barton, J. K., & Kostuk, R. K. (2017). Volume holographic imaging endoscopic design and construction techniques. Journal of biomedical optics, 22(5), 56010.

A reflectance volume holographic imaging (VHI) endoscope has been designed for simultaneous in vivo imaging of surface and subsurface tissue structures. Prior utilization of VHI systems has been limited to ex vivo tissue imaging. The VHI system presented in this work is designed for laparoscopic use. It consists of a probe section that relays light from the tissue sample to a handheld unit that contains the VHI microscope. The probe section is constructed from gradient index (GRIN) lenses that form a 1:1 relay for image collection. The probe has an outer diameter of 3.8 mm and is capable of achieving 228.1 ?? lp / mm resolution with 660-nm Kohler illumination. The handheld optical section operates with a magnification of 13.9 and a field of view of 390 ?? ? m × 244 ?? ? m . System performance is assessed through imaging of 1951 USAF resolution targets and soft tissue samples. The system has also passed sterilization procedures required for surgical use and has been used in two laparoscopic surgical procedures.

Watson, J. M., Marion, S. L., Rice, P. F., Bentley, D. L., Besselsen, D. G., Utzinger, U., Hoyer, P. B., & Barton, J. K. (2014). In vivo time-serial multi-modality optical imaging in a mouse model of ovarian tumorigenesis. Cancer Biology and Therapy, 15(1), 42-60.
BIO5 Collaborators
Jennifer Kehlet Barton, David G Besselsen

Abstract:

Identification of the early microscopic changes associated with ovarian cancer may lead to development of a diagnostic test for high-risk women. In this study we use optical coherence tomography (OCT) and multiphoton microscopy (MPM) (collecting both two photon excited fluorescence [TPEF] and second harmonic generation [SH G]) to image mouse ovaries in vivo at multiple time points. We demonstrate the feasibility of imaging mouse ovaries in vivo during a longterm survival study and identify microscopic changes associated with early tumor development. These changes include alterations in tissue microstructure, as seen by OCT, alterations in cellular fluorescence and morphology, as seen by TPEF, and remodeling of collagen structure, as seen by SH G. These results suggest that a combined OCT-MPM system may be useful for early detection of ovarian cancer. © 2014 Landes Bioscience.

Hariri, L. P., Qiu, Z., Tumlinson, A. R., Besselsen, D. G., Gerner, E. W., Ignatenko, N., Povazay, B., Hermann, B., Sattmann, H., McNally, J., Angelika, U., Drexler, W., & Barton, J. K. (2007). Serial endoscopy in azoxymethane treated mice using ultra-high resolution optical coherence tomography - art. no. 643208. Endoscopic Microscopy II, 6432, 43208-43208.