Jennifer Kehlet Barton

Jennifer Kehlet Barton

Director, BIO5 Institute
Thomas R. Brown Distinguished Chair in Biomedical Engineering
Professor, Agricultural-Biosystems Engineering
Professor, Biomedical Engineering
Professor, Electrical and Computer Engineering
Professor, Medical Imaging
Professor, Optical Sciences
Professor, Cancer Biology - GIDP
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
(520) 626-0314

Work Summary

I develop new optical imaging devices that can detect cancer at the earliest stage. Optics has the resolution and sensitivity to find these small, curable lesions, and we design the endoscope that provide access to organs inside the body. .

Research Interest

Jennifer Barton, Ph.D. is known for her development of miniature endoscopes that combine multiple optical imaging techniques, particularly optical coherence tomography and fluorescence spectroscopy. She evaluates the suitability of these endoscopic techniques for detecting early cancer development in patients and pre-clinical models. She has a particular interest in the early detection of ovarian cancer, the most deadly gynecological malignancy. Additionally, her research into light-tissue interaction and dynamic optical properties of blood laid the groundwork for a novel therapeutic laser to treat disorders of the skin’s blood vessels. She has published over 100 peer-reviewed journal papers in these research areas. She is currently Professor of Biomedical Engineering, Electrical and Computer Engineering, Optical Sciences, Agriculture-Biosystems Engineering, and Medical Imaging at the University of Arizona. She has served as department head of Biomedical Engineering, Associate Vice President for Research, and is currently Director of the BIO5 Institute, a collaborative research institute dedicated to solving complex biology-based problems affecting humanity. She is a fellow of SPIE – the International Optics Society, and a fellow of the American Institute for Medical and Biological Engineering. Keywords: bioimaging, biomedical optics, biomedical engineering, bioengineering, cancer, endoscopes


Barton, J., Winkler, A. M., Bonnema, G. T., & Barton, J. K. (2011). Optical polarimetry for noninvasive glucose sensing enabled by Sagnac interferometry. Applied optics, 50(17).

Optical polarimetry is used in pharmaceutical drug testing and quality control for saccharide-containing products (juice, honey). More recently, it has been proposed as a method for noninvasive glucose sensing for diabetic patients. Sagnac interferometry is commonly used in optical gyroscopes, measuring minute Doppler shifts resulting from mechanical rotation. In this work, we demonstrate that Sagnac interferometers are also sensitive to optical rotation, or the rotation of linearly polarized light, and are therefore useful in optical polarimetry. Results from simulation and experiment show that Sagnac interferometers are advantageous in optical polarimetry as they are insensitive to net linear birefringence and alignment of polarization components.

Linehan, J. A., Bracamonte, E. R., Hariri, L. P., Sokoloff, M. H., Rice, P. S., Barton, J. K., & Nguyen, M. M. (2011). Feasibility of optical coherence tomography imaging to characterize renal neoplasms: limitations in resolution and depth of penetration. BJU international, 108(11), 1820-4.

What's known on the subject? and What does the study add? Optical coherence tomography has been used for the diagnosis of retinal disease and has been used experimentally for imaging of vascular plaques, gastrointestinal pathology, bladder cancer, prostate cancer, and recently to examine benign kidney microanatomy. It has not been previously used to image kidney cancer. This study presents the first data on the utility of OCT in the imaging for renal neoplasms. It found that OCT was most successful in distinguishing AML and TCC from normal parenchyma. OCT had more limited success at differentiating oncocytoma. Clear cell tumors and other renal cancer subtypes had a more heterogenous appearance, precluding reliable identification using OCT. The study shows that higher resolution versions of OCT, such as OCM, will be needed to allow optical coherence imaging to reach clinical utility in the assessment of renal neoplasms.

Carbary-Ganz, J. L., Welge, W. A., Barton, J. K., & Utzinger, U. (2015). In vivo molecular imaging of colorectal cancer using quantum dots targeted to vascular endothelial growth factor receptor 2 and optical coherence tomography/laser-induced fluorescence dual-modality imaging. Journal of biomedical optics, 20(9), 096015.

Optical coherence tomography/laser induced fluorescence (OCT/LIF) dual-modality imaging allows for minimally invasive, nondestructive endoscopic visualization of colorectal cancer in mice. This technology enables simultaneous longitudinal tracking of morphological (OCT) and biochemical (fluorescence) changes as colorectal cancer develops, compared to current methods of colorectal cancer screening in humans that rely on morphological changes alone. We have shown that QDot655 targeted to vascular endothelial growth factor receptor 2 (QD655-VEGFR2) can be applied to the colon of carcinogen-treated mice and provides significantly increased contrast between the diseased and undiseased tissue with high sensitivity and specificity ex vivo. QD655-VEGFR2 was used in a longitudinal in vivo study to investigate the ability to correlate fluorescence signal to tumor development. QD655-VEGFR2 was applied to the colon of azoxymethane (AOM-) or saline-treated control mice in vivo via lavage. OCT/LIF images of the distal colon were taken at five consecutive time points every three weeks after the final AOM injection. Difficulties in fully flushing unbound contrast agent from the colon led to variable background signal; however, a spatial correlation was found between tumors identified in OCT images, and high fluorescence intensity of the QD655 signal, demonstrating the ability to detect VEGFR2 expressing tumors in vivo.

Barton, J., Hariri, L. P., Bonnema, G. T., Schmidt, K., Winkler, A. M., Korde, V., Hatch, K. D., Davis, J. R., Brewer, M. A., & Barton, J. K. (2009). Laparoscopic optical coherence tomography imaging of human ovarian cancer. Gynecologic oncology, 114(2).

Ovarian cancer is the fourth leading cause of cancer-related death among women in the US largely due to late detection secondary to unreliable symptomology and screening tools without adequate resolution. Optical coherence tomography (OCT) is a recently emerging imaging modality with promise in ovarian cancer diagnostics, providing non-destructive subsurface imaging at imaging depths up to 2 mm with near-histological grade resolution (10-20 microm). In this study, we developed the first ever laparoscopic OCT (LOCT) device, evaluated the safety and feasibility of LOCT, and characterized the microstructural features of human ovaries in vivo.