David G Besselsen
Adjunct Associate Professor, Animal and Comparative Biomedical Sciences
Associate Research Scientist, BIO5 Institute
Director/Attending Veterinarian, University Animal Care
Veterinary Specialist
Primary Department
(520) 621-1564
Research Interest
David Besselsen, DVM, PhD, is the Director of University Animal Care (UAC), the Attending Veterinarian. He is a board-certified veterinary specialist (Diplomate) in the American College of Laboratory Animal Medicine and the American College of Veterinary Pathology, and served as Interim Dean for the College of Veterinary Medicine from 2017-2019. In addition to his administrative and service responsibilities, Dr. Besselsen is actively engaged in research through the provision of comparative pathology support for rodent models and oversight of the gnotobiotic mouse service. He has directed UAC Pathology Services since his arrival in 1995 and has over 80 peer-reviewed publications. UAC Pathology Services provides diagnostic and comparative pathology support for the research animals and research animal facilities at the University of Arizona. Capabilities include hematology, blood chemistry, necropsy, histologic preparation and interpretation, and others.


Watson, J. M., Marion, S. L., Rice, P. F., Bentley, D. L., Besselsen, D. G., Utzinger, U., Hoyer, P. B., & Barton, J. K. (2014). In vivo time-serial multi-modality optical imaging in a mouse model of ovarian tumorigenesis. Cancer Biology and Therapy, 15(1), 42-60.
BIO5 Collaborators
Jennifer Kehlet Barton, David G Besselsen


Identification of the early microscopic changes associated with ovarian cancer may lead to development of a diagnostic test for high-risk women. In this study we use optical coherence tomography (OCT) and multiphoton microscopy (MPM) (collecting both two photon excited fluorescence [TPEF] and second harmonic generation [SH G]) to image mouse ovaries in vivo at multiple time points. We demonstrate the feasibility of imaging mouse ovaries in vivo during a longterm survival study and identify microscopic changes associated with early tumor development. These changes include alterations in tissue microstructure, as seen by OCT, alterations in cellular fluorescence and morphology, as seen by TPEF, and remodeling of collagen structure, as seen by SH G. These results suggest that a combined OCT-MPM system may be useful for early detection of ovarian cancer. © 2014 Landes Bioscience.

Barton, J., Hariri, L. P., Qiu, Z., Tumlinson, A. R., Besselsen, D. G., Gerner, E. W., Ignatenko, N. A., Povazay, B., Hermann, B., Sattmann, H., McNally, J., Unterhuber, A., Drexler, W., & Barton, J. K. (2007). Serial endoscopy in azoxymethane treated mice using ultra-high resolution optical coherence tomography. Cancer biology & therapy, 6(11).
BIO5 Collaborators
Jennifer Kehlet Barton, David G Besselsen

Optical coherence tomography (OCT) is a minimally invasive, depth-resolved imaging tool that can be implemented in a small diameter endoscope for imaging mouse models of colorectal cancer (CRC). In this study, we utilized ultrahigh resolution (UHR) OCT to serially image the lower colon of azoxymethane (AOM) treated A/J mouse models of CRC in order to monitor the progression of neoplastic transformations and determine if OCT is capable of identifying early disease.

Barton, J., Hariri, L. P., Tumlinson, A. R., Wade, N. H., Besselsen, D. G., Utzinger, U., Gerner, E. W., & Barton, J. K. (2007). Ex vivo optical coherence tomography and laser-induced fluorescence spectroscopy imaging of murine gastrointestinal tract. Comparative medicine, 57(2).
BIO5 Collaborators
Jennifer Kehlet Barton, David G Besselsen

Optical coherence tomography (OCT) and laser-induced fluorescence (LIF) spectroscopy each have clinical potential in identifying human gastrointestinal (GI) pathologies, yet their diagnostic capability in mouse models is unknown. In this study, we combined the 2 modalities to survey the GI tract of a variety of mouse strains and ages and to sample dysplasias and inflammatory bowel disease (IBD) of the intestines. Segments (length, 2.5 cm) of duodenum and lower colon and the entire esophagus were imaged ex-vivo with combined OCT and LIE We evaluated 30 normal mice (A/J and 10- and 21-wk-old and retired breeder C57BL/6J) and 10 mice each of 2 strains modeling colon cancer and IBD (Apc(Min) and IL2-deficient mice, respectively). Histology was used to classify tissue regions as normal, Peyer patch, dysplasia, adenoma, or IBD. Features in corresponding OCT images were analyzed. Spectra from each category were averaged and compared via Student t tests. OCT provided structural information that led to identification of the imaging characteristics of healthy mouse GI. With histology as the 'gold standard,' we developed preliminary image criteria for early disease in the form of adenomas, dysplasias, and IBD. LIF characterized the endogenous fluorescence of mouse GI tract, with spectral features corresponding to collagen, NADH, and hemoglobin. In the IBD sample, LIF emission spectra displayed potentially diagnostic peaks at 635 and 670 nm, which we attributed to increased porphyrin production by bacteria associated with IBD. OCT and LIF appear to be useful and complementary modalities for ex vivo imaging of mouse GI tissues.

Besselsen, D., Johnson, P. D., & Besselsen, D. G. (2002). Practical aspects of experimental design in animal research. ILAR journal / National Research Council, Institute of Laboratory Animal Resources, 43(4).

A brief overview is presented of the key steps involved in designing a research animal experiment, with reference to resources that specifically address each topic of discussion in more detail. After an idea for a research project is conceived, a thorough review of the literature and consultation with experts in that field are pursued to refine the problem statement and to assimilate background information that is necessary for the experimental design phase. A null and an alternate hypothesis that address the problem statement are then formulated, and only then is the specific design of the experiment developed. Likely the most critical step in designing animal experiments is the identification of the most appropriate animal model to address the experimental question being asked. Other practical considerations include defining the necessary control groups, randomly assigning animals to control/treatment groups, determining the number of animals needed per group, evaluating the logistics of the actual performance of the animal experiments, and identifying the most appropriate statistical analyses and potential collaborators experienced in the area of study. All of these factors are critical to designing an experiment that will generate scientifically valid and reproducible data, which should be considered the ultimate goal of any scientific investigation.

Laubitz, D., Harrison, C. A., Midura-Kiela, M. T., Ramalingam, R., Larmonier, C. B., Chase, J. H., Caporaso, J. G., Besselsen, D. G., Ghishan, F. K., & Kiela, P. R. (2016). Reduced Epithelial Na+/H+ Exchange Drives Gut Microbial Dysbiosis and Promotes Inflammatory Response in T Cell-Mediated Murine Colitis. PloS one, 11(4), e0152044.

Inflammatory bowel diseases (IBD) are associated with functional inhibition of epithelial Na+/H+ exchange. In mice, a selective disruption of NHE3 (Slc9a3), a major apical Na+/H+ exchanger, also promotes IBD-like symptoms and gut microbial dysbiosis. We hypothesized that disruption of Na+/H+ exchange is necessary for the development of dysbiosis, which promotes an exacerbated mucosal inflammatory response. Therefore, we performed a temporal analysis of gut microbiota composition, and mucosal immune response to adoptive T cell transfer was evaluated in Rag2-/- and NHE3-/-/Rag2-/- (DKO) mice with and without broad-spectrum antibiotics. Microbiome (16S profiling), colonic histology, T cell and neutrophil infiltration, mucosal inflammatory tone, and epithelial permeability were analyzed. In adoptive T cell transfer colitis model, Slc9a3 status was the most significant determinant of gut microbial community. In DKO mice, NHE3-deficiency and dysbiosis were associated with dramatically accelerated and exacerbated disease, with rapid body weight loss, increased mucosal T cell and neutrophil influx, increased mucosal cytokine expression, increased permeability, and expansion of CD25-FoxP3+ Tregs; this enhanced susceptibility was alleviated by oral broad-spectrum antibiotics. Based on these results and our previous work, we postulate that epithelial electrolyte homeostasis is an important modulator in the progression of colitis, acting through remodeling of the gut microbial community.