Jennifer Kehlet Barton

Jennifer Kehlet Barton

Director, BIO5 Institute
Thomas R. Brown Distinguished Chair in Biomedical Engineering
Professor, Agricultural-Biosystems Engineering
Professor, Biomedical Engineering
Professor, Electrical and Computer Engineering
Professor, Medical Imaging
Professor, Optical Sciences
Professor, Cancer Biology - GIDP
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 626-0314

Work Summary

I develop new optical imaging devices that can detect cancer at the earliest stage. Optics has the resolution and sensitivity to find these small, curable lesions, and we design the endoscope that provide access to organs inside the body. .

Research Interest

Jennifer Barton, Ph.D. is known for her development of miniature endoscopes that combine multiple optical imaging techniques, particularly optical coherence tomography and fluorescence spectroscopy. She evaluates the suitability of these endoscopic techniques for detecting early cancer development in patients and pre-clinical models. She has a particular interest in the early detection of ovarian cancer, the most deadly gynecological malignancy. Additionally, her research into light-tissue interaction and dynamic optical properties of blood laid the groundwork for a novel therapeutic laser to treat disorders of the skin’s blood vessels. She has published over 100 peer-reviewed journal papers in these research areas. She is currently Professor of Biomedical Engineering, Electrical and Computer Engineering, Optical Sciences, Agriculture-Biosystems Engineering, and Medical Imaging at the University of Arizona. She has served as department head of Biomedical Engineering, Associate Vice President for Research, and is currently Director of the BIO5 Institute, a collaborative research institute dedicated to solving complex biology-based problems affecting humanity. She is a fellow of SPIE – the International Optics Society, and a fellow of the American Institute for Medical and Biological Engineering. Keywords: bioimaging, biomedical optics, biomedical engineering, bioengineering, cancer, endoscopes

Publications

Barton, J., Hariri, L. P., Qiu, Z., Tumlinson, A. R., Besselsen, D. G., Gerner, E. W., Ignatenko, N. A., Povazay, B., Hermann, B., Sattmann, H., McNally, J., Unterhuber, A., Drexler, W., & Barton, J. K. (2007). Serial endoscopy in azoxymethane treated mice using ultra-high resolution optical coherence tomography. Cancer biology & therapy, 6(11).
BIO5 Collaborators
Jennifer Kehlet Barton, David G Besselsen

Optical coherence tomography (OCT) is a minimally invasive, depth-resolved imaging tool that can be implemented in a small diameter endoscope for imaging mouse models of colorectal cancer (CRC). In this study, we utilized ultrahigh resolution (UHR) OCT to serially image the lower colon of azoxymethane (AOM) treated A/J mouse models of CRC in order to monitor the progression of neoplastic transformations and determine if OCT is capable of identifying early disease.

Slayton, M. H., & Barton, J. K. (2014). Healing Tissue Response with ITU (Intense Therapy Ultrasound) in Musculoskeletal Tissue, Feasibility Study. 2014 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 1654-1657.
Slayton, M., & Barton, J. (2014). FEASIBILITY OF MODULATING HEALING TISSUE RESPONSE BY ITU (INTENSE THERAPY ULTRASOUND) IN MUSCULOSKELETAL TISSUE. LASERS IN SURGERY AND MEDICINE, 46, 55-55.
Linehan, J. A., Bracamonte, E. R., Hariri, L. P., Sokoloff, M. H., Rice, P. S., Barton, J. K., & Nguyen, M. M. (2011). Feasibility of optical coherence tomography imaging to characterize renal neoplasms: limitations in resolution and depth of penetration. BJU international, 108(11), 1820-4.

What's known on the subject? and What does the study add? Optical coherence tomography has been used for the diagnosis of retinal disease and has been used experimentally for imaging of vascular plaques, gastrointestinal pathology, bladder cancer, prostate cancer, and recently to examine benign kidney microanatomy. It has not been previously used to image kidney cancer. This study presents the first data on the utility of OCT in the imaging for renal neoplasms. It found that OCT was most successful in distinguishing AML and TCC from normal parenchyma. OCT had more limited success at differentiating oncocytoma. Clear cell tumors and other renal cancer subtypes had a more heterogenous appearance, precluding reliable identification using OCT. The study shows that higher resolution versions of OCT, such as OCM, will be needed to allow optical coherence imaging to reach clinical utility in the assessment of renal neoplasms.

Barton, J., Winkler, A. M., Bonnema, G. T., & Barton, J. K. (2011). Optical polarimetry for noninvasive glucose sensing enabled by Sagnac interferometry. Applied optics, 50(17).

Optical polarimetry is used in pharmaceutical drug testing and quality control for saccharide-containing products (juice, honey). More recently, it has been proposed as a method for noninvasive glucose sensing for diabetic patients. Sagnac interferometry is commonly used in optical gyroscopes, measuring minute Doppler shifts resulting from mechanical rotation. In this work, we demonstrate that Sagnac interferometers are also sensitive to optical rotation, or the rotation of linearly polarized light, and are therefore useful in optical polarimetry. Results from simulation and experiment show that Sagnac interferometers are advantageous in optical polarimetry as they are insensitive to net linear birefringence and alignment of polarization components.