Julie Ledford

Julie Ledford

Associate Professor, Cellular and Molecular Medicine
Associate Professor, Immunobiology
Associate Professor, Medicine
Associate Professor, Clinical Translational Sciences
Associate Professor, Applied BioSciences - GIDP
Member of the Graduate Faculty
Associate Professor, BIO5 Institute
Primary Department
Contact
(520) 626-0276

Work Summary

Julie Ledford's research focuses on respiratory disease, and genetic and molecular mechanisms of allergic airway diseases in children.

Research Interest

Dr. Ledford’s current work in the area of pulmonary surfactant immunobiology combines her knowledge of mouse genetics, pulmonary disease models and immune function regulation and focuses on understanding the role of Surfactant Protein-A (SP-A) and how it regulates signaling pathways within various immune cell populations. Specifically, she is interested in how SP-A regulates degranulation, either directly or indirectly, of two important cell types in asthma: mast cells and eosinophils. More recently, Dr. Ledford’s research has focused on understanding how genetic variation within human SP-A2 alters functionality of the protein in relation to eosinophil activities and how this translates to characteristics observed in human asthma.

Publications

Ledford, J. G., Lo, B., Kislan, M. M., Thomas, J. M., Evans, K., Cain, D. W., Kraft, M., Williams, K. L., & Wright, J. R. (2010). Surfactant protein-A inhibits mycoplasma-induced dendritic cell maturation through regulation of HMGB-1 cytokine activity. Journal of immunology (Baltimore, Md. : 1950), 185(7), 3884-94.

During pulmonary infections, a careful balance between activation of protective host defense mechanisms and potentially injurious inflammatory processes must be maintained. Surfactant protein A (SP-A) is an immune modulator that increases pathogen uptake and clearance by phagocytes while minimizing lung inflammation by limiting dendritic cell (DC) and T cell activation. Recent publications have shown that SP-A binds to and is bacteriostatic for Mycoplasma pneumoniae in vitro. In vivo, SP-A aids in maintenance of airway homeostasis during M. pneumoniae pulmonary infection by preventing an overzealous proinflammatory response mediated by TNF-α. Although SP-A was shown to inhibit maturation of DCs in vitro, the consequence of DC/SP-A interactions in vivo has not been elucidated. In this article, we show that the absence of SP-A during M. pneumoniae infection leads to increased numbers of mature DCs in the lung and draining lymph nodes during the acute phase of infection and, consequently, increased numbers of activated T and B cells during the course of infection. The findings that glycyrrhizin, a specific inhibitor of extracellular high-mobility group box-1 (HMGB-1) abrogated this effect and that SP-A inhibits HMGB-1 release from immune cells suggest that SP-A inhibits M. pneumoniae-induced DC maturation by regulating HMGB-1 cytokine activity.

Goto, H., Ledford, J. G., Mukherjee, S., Noble, P. W., Williams, K. L., & Wright, J. R. (2010). The role of surfactant protein A in bleomycin-induced acute lung injury. American journal of respiratory and critical care medicine, 181(12), 1336-44.

Surfactant protein A (SP-A) is a collectin family member that has multiple immunomodulatory roles in lung host defense. SP-A levels are altered in the bronchoalveolar lavage (BAL) fluid and serum of patients with acute lung injury and acute respiratory distress syndrome, suggesting the importance of SP-A in the pathogenesis of acute lung injury.

Lugogo, N., Francisco, D., Addison, K. J., Manne, A., Pederson, W., Ingram, J. L., Green, C. L., Suratt, B. T., Lee, J. J., Sunday, M. E., Kraft, M., & Ledford, J. G. (2017). Obese asthmatic patients have decreased surfactant protein A levels: Mechanisms and implications. The Journal of allergy and clinical immunology.

Eosinophils are prominent in some patients with asthma and are increased in the submucosa in a subgroup of obese patients with asthma (OAs). Surfactant protein A (SP-A) modulates host responses to infectious and environmental insults.

Li, Z., Tighe, R. M., Feng, F., Ledford, J. G., & Hollingsworth, J. W. (2013). Genes of innate immunity and the biological response to inhaled ozone. Journal of biochemical and molecular toxicology, 27(1), 3-16.

Ambient ozone has a significant impact on human health. We have made considerable progress in understanding the fundamental mechanisms that regulate the biological response to ozone. It is increasingly clear that genes of innate immunity play a central role in both infectious and noninfectious lung disease. The biological response to ambient ozone provides a clinically relevant environmental exposure that allows us to better understand the role of innate immunity in noninfectious airways disease. In this brief review, we focus on (1) specific cell types in the lung modified by ozone, (2) ozone and oxidative stress, (3) the relationship between genes of innate immunity and ozone, (4) the role of extracellular matrix in reactive airways disease, and (5) the effect of ozone on the adaptive immune system. We summarize recent advances in understanding the mechanisms that ozone contributes to environmental airways disease.

Ledford, J. G., Pastva, A. M., & Wright, J. R. (2010). Review: Collectins link innate and adaptive immunity in allergic airway disease. Innate immunity, 16(3), 183-90.

Although the lipoprotein complex of pulmonary surfactant has long been recognized as essential for reducing lung surface tension, its role in lung immune host defense has only relatively recently been elucidated. Surfactant-associated proteins A (SP-A) and D (SP-D) can attenuate bacterial and viral infection and inflammation by acting as opsonins and by regulating innate immune cell functions. Surfactant-associated protein A and D also interact with antigen-presenting cells and T cells, thereby linking the innate and adaptive immune systems. A recent study from our laboratory demonstrated that mice deficient in SP-A have enhanced susceptibility to airway hyper-responsiveness and lung inflammation induced by Mycoplasma pneumonia, an atypical bacterium present in the airways of approximately 50% of asthmatics experiencing their first episode, and further supports an important role for SP-A in the host response to allergic airway disease. Animal and human studies suggest that alterations in the functions or levels of SP-A and SP-D are associated with both infectious and non-infectious chronic lung diseases such as asthma. Future studies are needed to elucidate whether alterations in SP-A and SP-D are a consequence and/or cause of allergic airway disease.