Samantha Harris

Samantha Harris

Professor, Cellular and Molecular Medicine
Co-Chair, ABBS Program
Professor, Biomedical Engineering
Professor, Physiological Sciences - GIDP
Professor, Physiology
Member of the Graduate Faculty
Professor, BIO5 Institute
Primary Department
Contact
(520) 621-0291

Work Summary

The long-term goal of research in my lab is to understand the molecular mechanisms of muscle contraction. I am especially interested in how contractile proteins of muscle sarcomeres regulate the force and speed of contraction in the heart. The question is important from both basic science and clinical perspectives because mutations in sarcomere proteins of muscle are a leading cause of hypertrophic cardiomyopathy (HCM), the most common cause of sudden cardiac death in the young and a prevalent cause of heart failure in adults. Myosin binding protein-C (MyBP-C) is a muscle regulatory protein that speeds actomyosin cycling kinetics in response to adrenaline (b-adrenergic stimuli) and is one of the two most commonly affected proteins linked to HCM. Currently, the major research focus in my lab is understanding the mechanisms by which cMyBP-C regulates contractile speed and mechanisms by which mutations in cMyBP-C cause disease.

Research Interest

The long-term goal of research in my lab is to understand the molecular mechanisms of muscle contraction. I am especially interested in how contractile proteins of muscle sarcomeres regulate the force and speed of contraction in the heart. The question is important from both basic science and clinical perspectives because mutations in sarcomere proteins of muscle are a leading cause of hypertrophic cardiomyopathy (HCM), the most common cause of sudden cardiac death in the young and a prevalent cause of heart failure in adults. Myosin binding protein-C (MyBP-C) is a muscle regulatory protein that speeds actomyosin cycling kinetics in response to adrenaline (b-adrenergic stimuli) and is one of the two most commonly affected proteins linked to HCM. Currently, the major research focus in my lab is understanding the mechanisms by which cMyBP-C regulates contractile speed and mechanisms by which mutations in cMyBP-C cause disease. In pursuing these interests I have established a variety of approaches to investigate muscle contraction at molecular, cellular, and whole animal levels. Methods include single molecule atomic force microscopy (AFM), mechanical force measurements in permeabilized muscle cells, in vitro motility assays, biochemical enzyme and binding assays, immunofluorescent imaging, knockout/transgenic animal models and the development of a natural large animal model of HCM.

Publications

Whitten, A. E., Jeffries, C. M., Harris, S. P., & Trewhella, J. (2008). Cardiac myosin-binding protein C decorates F-actin: implications for cardiac function. Proceedings of the National Academy of Sciences of the United States of America, 105(47), 18360-5.

Cardiac myosin-binding protein C (cMyBP-C) is an accessory protein of striated muscle sarcomeres that is vital for maintaining regular heart function. Its 4 N-terminal regulatory domains, C0-C1-m-C2 (C0C2), influence actin and myosin interactions, the basic contractile proteins of muscle. Using neutron contrast variation data, we have determined that C0C2 forms a repeating assembly with filamentous actin, where the C0 and C1 domains of C0C2 attach near the DNase I-binding loop and subdomain 1 of adjacent actin monomers. Direct interactions between the N terminus of cMyBP-C and actin thereby provide a mechanism to modulate the contractile cycle by affecting the regulatory state of the thin filament and its ability to interact with myosin.

Bezold, K. L., Shaffer, J. F., Khosa, J. K., Hoye, E. R., & Harris, S. P. (2013). A gain-of-function mutation in the M-domain of cardiac myosin-binding protein-C increases binding to actin. The Journal of biological chemistry, 288(30), 21496-505.

The M-domain is the major regulatory subunit of cardiac myosin-binding protein-C (cMyBP-C) that modulates actin and myosin interactions to influence muscle contraction. However, the precise mechanism(s) and the specific residues involved in mediating the functional effects of the M-domain are not fully understood. Positively charged residues adjacent to phosphorylation sites in the M-domain are thought to be critical for effects of cMyBP-C on cross-bridge interactions by mediating electrostatic binding with myosin S2 and/or actin. However, recent structural studies revealed that highly conserved sequences downstream of the phosphorylation sites form a compact tri-helix bundle. Here we used site-directed mutagenesis to probe the functional significance of charged residues adjacent to the phosphorylation sites and conserved residues within the tri-helix bundle. Results confirm that charged residues adjacent to phosphorylation sites and residues within the tri-helix bundle are important for mediating effects of the M-domain on contraction. In addition, four missense variants within the tri-helix bundle that are associated with human hypertrophic cardiomyopathy caused either loss-of-function or gain-of-function effects on force. Importantly, the effects of the gain-of-function variant, L348P, increased the affinity of the M-domain for actin. Together, results demonstrate that functional effects of the M-domain are not due solely to interactions with charged residues near phosphorylatable serines and provide the first demonstration that the tri-helix bundle contributes to the functional effects of the M-domain, most likely by binding to actin.

Stern, J. A., Markova, S., Ueda, Y., Kim, J. B., Pascoe, P. J., Evanchik, M. J., Green, E. M., & Harris, S. P. (2016). A Small Molecule Inhibitor of Sarcomere Contractility Acutely Relieves Left Ventricular Outflow Tract Obstruction in Feline Hypertrophic Cardiomyopathy. PloS one, 11(12), e0168407.

Hypertrophic cardiomyopathy (HCM) is an inherited disease of the heart muscle characterized by otherwise unexplained thickening of the left ventricle. Left ventricular outflow tract (LVOT) obstruction is present in approximately two-thirds of patients and substantially increases the risk of disease complications. Invasive treatment with septal myectomy or alcohol septal ablation can improve symptoms and functional status, but currently available drugs for reducing obstruction have pleiotropic effects and variable therapeutic responses. New medical treatments with more targeted pharmacology are needed, but the lack of preclinical animal models for HCM with LVOT obstruction has limited their development. HCM is a common cause of heart failure in cats, and a subset exhibit systolic anterior motion of the mitral valve leading to LVOT obstruction. MYK-461 is a recently-described, mechanistically novel small molecule that acts at the sarcomere to specifically inhibit contractility that has been proposed as a treatment for HCM. Here, we use MYK-461 to test whether direct reduction in contractility is sufficient to relieve LVOT obstruction in feline HCM. We evaluated mixed-breed cats in a research colony derived from a Maine Coon/mixed-breed founder with naturally-occurring HCM. By echocardiography, we identified five cats that developed systolic anterior motion of the mitral valve and LVOT obstruction both at rest and under anesthesia when provoked with an adrenergic agonist. An IV MYK-461 infusion and echocardiography protocol was developed to serially assess contractility and LVOT gradient at multiple MYK-461 concentrations. Treatment with MYK-461 reduced contractility, eliminated systolic anterior motion of the mitral valve and relieved LVOT pressure gradients in an exposure-dependent manner. Our findings provide proof of principle that acute reduction in contractility with MYK-461 is sufficient to relieve LVOT obstruction. Further, these studies suggest that feline HCM will be a valuable translational model for the study of disease pathology, particularly LVOT obstruction.

Walcott, S., Docken, S., & Harris, S. P. (2015). Effects of cardiac Myosin binding protein-C on actin motility are explained with a drag-activation-competition model. Biophysical journal, 108(1), 10-3.

Although mutations in cardiac myosin binding protein-C (cMyBP-C) cause heart disease, its role in muscle contraction is not well understood. A mechanism remains elusive partly because the protein can have multiple effects, such as dual biphasic activation and inhibition observed in actin motility assays. Here we develop a mathematical model for the interaction of cMyBP-C with the contractile proteins actin and myosin and the regulatory protein tropomyosin. We use this model to show that a drag-activation-competition mechanism accurately describes actin motility measurements, while models lacking either drag or competition do not. These results suggest that complex effects can arise simply from cMyBP-C binding to actin.

Razumova, M. V., Bezold, K. L., Tu, A., Regnier, M., & Harris, S. P. (2008). Contribution of the myosin binding protein C motif to functional effects in permeabilized rat trabeculae. The Journal of general physiology, 132(5), 575-85.

Myosin binding protein C (MyBP-C) is a thick-filament protein that limits cross-bridge cycling rates and reduces myocyte power output. To investigate mechanisms by which MyBP-C affects contraction, we assessed effects of recombinant N-terminal domains of cardiac MyBP-C (cMyBP-C) on contractile properties of permeabilized rat cardiac trabeculae. Here, we show that N-terminal fragments of cMyBP-C that contained the first three immunoglobulin domains of cMyBP-C (i.e., C0, C1, and C2) plus the unique linker sequence termed the MyBP-C "motif" or "m-domain" increased Ca(2+) sensitivity of tension and increased rates of tension redevelopment (i.e., k(tr)) at submaximal levels of Ca(2+). At concentrations > or =20 microM, recombinant proteins also activated force in the absence of Ca(2+) and inhibited maximum Ca(2+)-activated force. Recombinant proteins that lacked the combination of C1 and the motif did not affect contractile properties. These results suggest that the C1 domain plus the motif constitute a functional unit of MyBP-C that can activate the thin filament.