Bentley A Fane

Bentley A Fane

Professor, Plant Sciences
Professor, Applied BioSciences - GIDP
Professor, Genetics - GIDP
Professor, Immunobiology
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-6634

Work Summary

Upon infection, viruses must transport their genomes into cells and produce progeny, often under a strict time deadline. We study how the viral proteins interact with with each other and with host cell proteins to efficiently accomplish these processes.

Research Interest

Bentley A. Fane, PhD, is a Professor in the School of Plant Sciences, College of Agriculture and Life Sciences and holds a joint appointment in the Department of Immunobiology, Arizona College of Medicine. Dr. Fane has an international reputation for his research into virus structure, assembly and evolution. His research focuses on the viruses of the Microviridae, of which he is considered one of the leading experts. He has been instrumental in defining the biochemical and structural parameters that allow these viruses to replicate and produce progeny in as little as five minutes. The rapid lifecycle has facilitated in depth studies into how viruses evolved resistance mechanism to anti-viral proteins targeting particle assembly.He has published over 60 original research paper in leading scientific journals, including Nature, Molecular Cell, and Journal of Virology, in which his publications on the evolution of resistance mechanisms and kinetic traps have been selected by the journal editors as articles of “significant interest.” He is a frequent presenter at national and international meetings, and has been invited to State of the Art and plenary talks at give the American Society for Virology. He presently serves on the Editorial Boards of two leading virology journals: Virology and the Journal of Virology. At the University of Arizona, Dr. Fane has been actively involved in promoting undergraduate research has been honored with teaching awards on the department, college, and university levels. Keywords: Virus structure and assembly, Viral DNA translocation, Viral evolution

Publications

Sun, L., Young, L. N., Zhang, X., Budko, S. P., Fokine, A., Zbornik, E., Roznowski, A. P., Moulineux, I. J., Rossmann, M. G., & Fane, B. A. (2014). Icosahedral phiX174 forms a tail for DNA transport.. Nature, 505, 432-435.

Prokaryotic viruses have evolved various mechanisms to transport their genomes across bacterial cell walls. Many bacteriophages use a tail to perform this function, whereas tail-less phages rely on host organelles. However, the tail-less, icosahedral, single-stranded DNA phiX174-like coliphages do not fall into these well-defined infection processes. For these phages, DNA delivery requires a DNA pilot protein. Here we show that the phiX174 pilot protein H oligomerizes to form a tube whose function is most probably to deliver the DNA genome across the host's periplasmic space to the cytoplasm. The 2.4 Angstrom resolution crystal structure of the in vitro assembled H protein's central domain consists of a 170 Angstron-long alpha-helical barrel. The tube is constructed of ten alpha-helices with their amino termini arrayed in a right-handed super-helical coiled-coil and their carboxy termini arrayed in a left-handed super-helical coiled-coil. Genetic and biochemical studies demonstrate that the tube is essential for infectivity but does not affect in vivo virus assembly. Cryo-electron tomograms show that tubes span the periplasmic space and are present while the genome is being delivered into the host cell's cytoplasm. Both ends of the H protein contain transmembrane domains, which anchor the assembled tubes into the inner and outer cell membranes. The central channel of the H-protein tube is lined with amide and guanidinium side chains. This may be a general property of viral DNA conduits and is likely to be critical for efficient genome translocation into the host.

Ekechukwu, M. C., Oberste, D. J., & Fane, B. A. (1995). Host and φX 174 mutations affecting the morphogenesis or stabilization of the 50S complex, a single-stranded DNA synthesizing intermediate. Genetics, 140(4), 1167-1174.

PMID: 7498760;PMCID: PMC1206684;Abstract:

The morphogenetic pathway of bacteriophage φX 174 was investigated in rep mutant hosts that specifically block stage III single-stranded DNA synthesis. The defects conferred by the mutant rep protein most likely affect the formation or stabilization of the 50S complex, a single-stranded DNA synthesizing intermediate, which consists of a viral prohead and a DNA replicating intermediate (preinitiation complex). φX 174 mutants, ogr (rep), which restore the ability to propagate in the mutant rep hosts, were isolated. The ogr(rep) mutations confer amino acid substitutions in the viral coat protein, a constituent of the prohead, and the viral A protein, a constituent of the preinitiation complex. Four of the six coat protein substitutions are localized on or near the twofold axis of symmetry in the atomic structure of the mature virion.

Sun, Y., Roznowski, A. P., Tokuda, J. M., Klose, T., Mauney, A., Pollack, L., Fane, B. A., & Rossmann, M. G. (2017). Structural changes of tailless bacteriophage ΦX174 during penetration of bacterial cell walls. Proceedings of the National Academy of Sciences of the United States of America, 114, 13708–13713.

Unlike tailed bacteriophages, which use a preformed tail for transporting their genomes into a host bacterium, the ssDNA bacteriophage ΦX174 is tailless. Using cryo-electron microscopy and time-resolved small-angle X-ray scattering, we show that lipopolysaccharides (LPS) form bilayers that interact with ΦX174 at an icosahedral fivefold vertex and induce single-stranded (ss) DNA genome ejection. The structures of ΦX174 complexed with LPS have been determined for the pre- and post-ssDNA ejection states. The ejection is initiated by the loss of the G protein spike that encounters the LPS, followed by conformational changes of two polypeptide loops on the major capsid F proteins. One of these loops mediates viral attachment, and the other participates in making the fivefold channel at the vertex contacting the LPS.

Morais, M. C., Fisher, M., Kanamaru, S., Przybyla, L., Burgner, J., Fane, B. A., & Rossmann, M. G. (2004). Conformational switching by the scaffolding protein D directs the assembly of bacteriophage φX174. Molecular Cell, 15(6), 991-997.

PMID: 15383287;Abstract:

The three-dimensional structure of bacteriophage φX174 external scaffolding protein D, prior to its interaction with other structural proteins, has been determined to 3.3 Å by X-ray crystallography. The crystals belong to space group P41212 with a dimer in the asymmetric unit that closely resembles asymmetric dimers observed in the φX174 procapsid structure. Furthermore, application of the crystallographic 41 symmetry operation to one of these dimers generates a tetramer similar to the tetramer in the icosahedral asymmetric unit of the procapsid. These data suggest that both dimers and tetramers of the D protein are true morphogenetic intermediates and can form independently of other proteins involved in procapsid morphogenesis. The crystal structure of the D scaffolding protein thus represents the state of the polypeptide prior to procapsid assembly. Hence, comparison with the procapsid structure provides a rare opportunity to follow the conformational switching events necessary for the construction of complex macromolecular assemblies.

Fane, B., Ruboyianes, M. V., Chen, M., Dubrava, M. S., Cherwa, J. E., & Fane, B. A. (2009). The expression of N-terminal deletion DNA pilot proteins inhibits the early stages of phiX174 replication. Journal of virology, 83(19).

The phiX174 DNA pilot protein H contains four predicted C-terminal coiled-coil domains. The region of the gene encoding these structures was cloned, expressed in vivo, and found to strongly inhibit wild-type replication. DNA and protein synthesis was investigated in the absence of de novo H protein synthesis and in wild-type-infected cells expressing the inhibitory proteins (DeltaH). The expression of the DeltaH proteins interfered with early stages of DNA replication, which did not require de novo H protein synthesis, suggesting that the inhibitory proteins interfere with the wild-type H protein that enters the cell with the penetrating DNA. As transcription and protein synthesis are dependent on DNA replication in positive single-stranded DNA life cycles, viral protein synthesis was also reduced. However, unlike DNA synthesis, efficient viral protein synthesis required de novo H protein synthesis, a novel function for this protein. A single amino acid change in the C terminus of protein H was both necessary and sufficient to confer resistance to the inhibitory DeltaH proteins, restoring both DNA and protein synthesis to wild-type levels. DeltaH proteins derived from the resistant mutant did not inhibit wild-type or resistant mutant replication. The inhibitory effects of the DeltaH proteins were lessened by the coexpression of the internal scaffolding protein, which may suppress H-H protein interactions. While coexpression relieved the block in DNA biosynthesis, viral protein synthesis remained suppressed. These data indicate that protein H's role in DNA replication and stimulating viral protein synthesis can be uncoupled.