Bentley A Fane
Professor, BIO5 Institute
Professor, Genetics - GIDP
Professor, Immunobiology
Professor, Plant Sciences
Professor, Applied BioSciences - GIDP
Primary Department
Department Affiliations
(520) 626-6634
Work Summary
Upon infection, viruses must transport their genomes into cells and produce progeny, often under a strict time deadline. We study how the viral proteins interact with with each other and with host cell proteins to efficiently accomplish these processes.
Research Interest
Bentley A. Fane, PhD, is a Professor in the School of Plant Sciences, College of Agriculture and Life Sciences and holds a joint appointment in the Department of Immunobiology, Arizona College of Medicine. Dr. Fane has an international reputation for his research into virus structure, assembly and evolution. His research focuses on the viruses of the Microviridae, of which he is considered one of the leading experts. He has been instrumental in defining the biochemical and structural parameters that allow these viruses to replicate and produce progeny in as little as five minutes. The rapid lifecycle has facilitated in depth studies into how viruses evolved resistance mechanism to anti-viral proteins targeting particle assembly.He has published over 60 original research paper in leading scientific journals, including Nature, Molecular Cell, and Journal of Virology, in which his publications on the evolution of resistance mechanisms and kinetic traps have been selected by the journal editors as articles of “significant interest.” He is a frequent presenter at national and international meetings, and has been invited to State of the Art and plenary talks at give the American Society for Virology. He presently serves on the Editorial Boards of two leading virology journals: Virology and the Journal of Virology. At the University of Arizona, Dr. Fane has been actively involved in promoting undergraduate research has been honored with teaching awards on the department, college, and university levels. Keywords: Virus structure and assembly, Viral DNA translocation, Viral evolution


Christakos, K. J., Chapman, J. A., Fane, B. A., & Campos, S. K. (2015). PhiXing-it, displaying foreign peptides on bacteriophage ΦX174. Virology, 488, 242-248.
BIO5 Collaborators
Samuel K Campos, Bentley A Fane

Although bacteriophage φX174 is easy to propagate and genetically tractable, it is use as a peptide display platform has not been explored. One region within the φX174 major spike protein G tolerated 13 of 16 assayed insertions, ranging from 10 to 75 amino acids. The recombinant proteins were functional and incorporated into infectious virions. In the folded protein, the peptides would be icosahedrally displayed within loops that extend from the protein׳s β-barrel core. The well-honed genetics of φX174 allowed permissive insertions to be quickly identified by the cellular phenotypes associated with cloned gene expression. The cloned genes were easily transferred from plasmids to phage genomes via recombination rescue. Direct ELISA validated several recombinant virions for epitope display. Some insertions conferred a temperature-sensitive (ts) protein folding defect, which was suppressed by global suppressors in protein G, located too far away from the insertion to directly alter peptide display.

Prevelige, P. E., & Fane, B. A. (2012). Building the machines: Scaffolding protein functions during bacteriophage morphogenesis. Advances in Experimental Medicine and Biology, 726, 325-350.

PMID: 22297520;Abstract:

For a machine to function, it must first be assembled. The morphogenesis of the simplest icosahedral virus would require only 60 copies of a single capsid protein to coalesce. If the capsid protein's structure could be entirely dedicated to this endeavor, the morphogenetic mechanism would be relatively uncomplicated. However, capsid proteins have had to evolve other functions, such as receptor recognition, immune system evasion, and the incorporation of other structure proteins, which can detract from efficient assembly. Moreover, evolution has mandated that viruses obtain additional proteins that allow them to adapt to their hosts or to more effectively compete in their respective niches. Consequently, genomes have increased in size, which has required capsids to do likewise. This, in turn, has lead to more complex icosahedral geometries. These challenges have driven the evolution of scaffolding proteins, which mediate, catalyze, and promote proper virus assembly. The mechanisms by which these proteins perform their functions are discussed in this review. © 2012 Springer Science+Business Media, LLC.

Fane, B., & King, J. (1991). Intragenic suppressors of folding defects in the P22 tailspike protein. Genetics, 127(2), 263-277.

PMID: 1825987;PMCID: PMC1204354;Abstract:

Within the amino acid sequences of polypeptide chains little is known of the distribution of sites and sequences critical for directing chain folding and assembly. Temperature-sensitive folding (tsf) mutations identifying such sites have been previously isolated and characterized in gene 9 of phage P22 encoding the tailspike endorhamnosidase. We report here the isolation of a set of second-site conformational suppressors which alleviate the defect in such folding mutants. The suppressors were selected for their ability to correct the defects of missense tailspike polypeptide chains, generated by growth of gene 9 amber mutants on Salmonella host strains inserting either tyrosine, serine, glutamine or leucine at the nonsense codons. Second-site suppressors were recovered for 13 of 22 starting sites. The suppressors of defects at six sites mapped within gene 9. (Suppressors for seven other sites were extragenic and distant from gene 9.) The missense polypeptide chains generated from all six suppressible sites displayed ts phenotypes. Temperature-sensitive alleles were isolated at these amber sites by pseudoreversion. The intragenic suppressors restored growth at the restrictive temperature of these presumptive tsf alleles. Characterization of protein maturation in cells infected with mutant phages carrying the intragenic suppressors indicates that the suppression is acting at the level of polypeptide chain folding and assembly.

Hafenstein, S. L., Chen, M., & Fane, B. A. (2004). Genetic and functional analyses of the øx174 DNA binding protein: The effects of substitutions for amino acid residues that spatially organize the two DNA binding domains. Virology, 318(1), 204-213.

PMID: 14972548;Abstract:

The øX174 DNA binding protein contains two DNA binding domains, containing a series of DNA binding basic amino acids, separated by a proline-rich linker region. Within each DNA binding domain, there is a conserved glycine residue. Glycine and proline residues were mutated and the effects on virion structure were examined. Substitutions for glycine residues yield particles with similar properties to previously characterized mutants with substitutions for DNA binding residues. Both sets of mutations share a common extragenic second-site suppressor, suggesting that the defects caused by the mutant proteins are mechanistically similar. Hence, glycine residues may optimize DNA-protein contacts. The defects conferred by substitutions for proline residues appear to be fundamentally different. The properties of the mutant particles along with the atomic structure of the virion suggest that the proline residues may act to guide the packaged DNA to the adjacent fivefold related asymmetric unit, thus preventing a chaotic packaging arrangement. © 2003 Elsevier Inc. All rights reserved.

Cherwa, J. E., & Fane, B. A. (2011). From resistance to stimulation: the evolution of a virus in the presence of a dominant lethal inhibitory scaffolding protein. Journal of virology, 85(13).

By acquiring resistance to an inhibitor, viruses can become dependent on that inhibitor for optimal fitness. However, inhibitors rarely, if ever, stimulate resistant strain fitness to values that equal or exceed the uninhibited wild-type level. This would require an adaptive mechanism that converts the inhibitor into a beneficial replication factor. Using a plasmid-encoded inhibitory external scaffolding protein that blocks ϕX174 assembly, we previously demonstrated that such mechanisms are possible. The resistant strain, referred to as the evolved strain, contains four mutations contributing to the resistance phenotype. Three mutations confer substitutions in the coat protein, whereas the fourth mutation alters the virus-encoded external scaffolding protein. To determine whether stimulation by the inhibitory protein coevolved with resistance or whether it was acquired after resistance was firmly established, the strain temporally preceding the previously characterized mutant, referred to as the intermediary strain, was isolated and characterized. The results of the analysis indicated that the mutation in the virus-encoded external scaffolding protein was primarily responsible for stimulating strain fitness. When the mutation was placed in a wild-type background, it did not confer resistance. The mutation was also placed in cis with the plasmid-encoded dominant lethal mutation. In this configuration, the stimulating mutation exhibited no activity, regardless of the genotype (wild type, evolved, or intermediary) of the infecting virus. Thus, along with the coat protein mutations, stimulation required two external scaffolding protein genes: the once inhibitory gene and the mutant gene acquired during evolution.