Judith K Brown

Judith K Brown

Professor, Plant Science
Regents Professor, Plant Sciences
Research Associate Professor, Entomology
Professor, Entomology / Insect Science - GIDP
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 621-1402

Work Summary

Unravel the phylodynamics and transmission-specific determinants of emerging plant virus/fastidious bacteria-insect vector complexes, and translate new knowledge to abate pathogen spread in food systems.

Research Interest

Judith Brown, PhD, and her research interests include the molecular epidemiology of whitefly-transmitted geminiviruses (Begomoviruses, Family: Geminiviridae), the basis for virus-vector specificity and the transmission pathway, and the biotic and genetic variation between populations of the whitefly vector, B. tabaci, that influence the molecular epidemiology and evolution of begomoviruses. Keywords: Plant viral genomics, emergent virus phylodynamics, functional genomics of insect-pathogen interactions

Publications

Brown, J. K. (2016). A defective putative promoter region upstream of the PepGMV-D movement protein gene is associated with viral-induced tissue tropism and PTGS/TGS induction leading to host recovery. J Virol..

Idris, A.M., Hernández-Zepeda, C. and Brown, J.K. A defective putative promoter region upstream of the PepGMV-D movement protein gene is associated with viral-induced tissue tropism and PTGS/TGS induction leading to host recovery. J. Virol. (re-submitted).

Brown, J. K. (2017). Single-target and multiplex discrimination of whiteflies (Hemiptera: Aleyrodidae) Bemisia tabaci and Trialeurodes vaporariorum using modified priming oligonucleotide thermodynamics. J. Econ. Entomol, 110(4), 1-10. doi:https://doi.org/10.1093/jee/tox125.
Kirk, A. A., Lacey, L. A., Brown, J. K., Ciomperlik, M. A., Goolsby, J. A., Vacek, D. C., Wendel, L. E., & Napompeth, B. (2000). Variation in the Bemisia tabaci s. 1. species complex (Hemiptera: Aleyrodidae) and its natural enemies leading to successful biological control of Bemisia biotype B in the USA. Bulletin of Entomological Research, 90(4), 317-327.

PMID: 11020790;Abstract:

Parasitoids of the Bemisia tabaci (Gennadius) species complex collected in Spain and Thailand were evaluated as biological control agents of B. tabaci biotype B in cole crops in Texas, USA. Parasitoids were identified by morphological and RAPD-PCR analyses. The most abundant parasitoid from Spain was Eretmocerus mundus Mercet with apparent field parasitism of 39-44%. In Thailand, Encarsia formosa Gahan, E. transvena Timberlake, E. adrianae Lopez-Avila, Eretmocerus sp. 1 and sp. 2 emerged, with apparent field parasitism of 1-65%. Identification and molecular classification of B. tabaci associated with parasitoid collections and in the release site in Texas were accomplished using morphological traits and nucleotide sequence comparison of the mitochondrial cytochrome oxidase I gene (COI) (700-720 bp). Collections of B. tabaci from Thailand grouped separately from B types from Arizona and Florida and the target B type from Texas, USA, a cluster from India, and other New World B. tabaci. The Spanish B. tabaci host of E. mundus which was laboratory and field-tested to achieve biological control of the B type was most closely related to non-B type B. tabaci populations from Spain and Sudan, the latter which formed a second group within the larger clade that also contained the B type cluster. Laboratory tests indicated that E. mundus from Spain parasitized more B. tabaci type B than did Eretmocerus spp. native to Texas and other exotic parasitoids evaluated. Eretmocerus mundus from Spain also successfully parasitized B, tabaci type B when field-released in a 0.94 million ha test area in Texas, and has significantly enhanced control of B. tabaci type B in California, USA. In contrast, parasitoids from Thailand failed to establish in the field in Texas, collectively suggesting a positive correlation between the centres of diversity of compatible parasitoid-host complexes.

Brown, J. K. (2017). Engineered disease resistance in cotton using RNA-interference to knock down Cotton leaf curl Kokhran virus-Burewala and Cotton leaf curl Multan betasatellite expression. Viruses, 9(9), 257.
Briddon, R. W., Brown, J. K., Moriones, E., Stanley, J., Zerbini, M., Zhou, X., & Fauquet, C. M. (2008). Recommendations for the classification and nomenclature of the DNA-β satellites of begomoviruses. Archives of Virology, 153(4), 763-781.

PMID: 18247103;Abstract:

The symptom-modulating, single-stranded DNA satellites (known as DNA-β) associated with begomoviruses (family Geminiviridae) have proven to be widespread and important components of a large number of plant diseases across the Old World. Since they were first identified in 2000, over 260 full-length sequences (∼1,360 nucleotides) have been deposited with databases, and this number increases daily. This has highlighted the need for a standardised, concise and unambiguous nomenclature for these components, as well as a meaningful and robust classification system. Pairwise comparisons of all available full-length DNA-β sequences indicate that the minimum numbers of pairs occur at a sequence identity of 78%, which we propose as the species demarcation threshold for a distinct DNA-β. This threshold value divides the presently known DNA-β sequences into 51 distinct satellite species. In addition, we propose a naming convention for the satellites that is based upon the system already in use for geminiviruses. This maintains, whenever possible, the association with the helper begomovirus, the disease symptoms and the host plant and provides a logical and consistent system for referring to already recognised and newly identified satellites. © 2008 Springer-Verlag.