Judith K Brown
Professor, BIO5 Institute
Professor, Entomology / Insect Science - GIDP
Professor, Plant Science
Regents Professor, Plant Sciences
Research Associate Professor, Entomology
Primary Department
(520) 621-1402
Work Summary
Unravel the phylodynamics and transmission-specific determinants of emerging plant virus/fastidious bacteria-insect vector complexes, and translate new knowledge to abate pathogen spread in food systems.
Research Interest
Judith Brown, PhD, and her research interests include the molecular epidemiology of whitefly-transmitted geminiviruses (Begomoviruses, Family: Geminiviridae), the basis for virus-vector specificity and the transmission pathway, and the biotic and genetic variation between populations of the whitefly vector, B. tabaci, that influence the molecular epidemiology and evolution of begomoviruses. Keywords: Plant viral genomics, emergent virus phylodynamics, functional genomics of insect-pathogen interactions

Publications

Briddon, R. W., Bull, S. E., Amin, I., Idris, A. M., Mansoor, S., Bedford, I. D., Dhawan, P., Rishi, N., Siwatch, S. S., Abdel-Salam, A. M., Brown, J. K., Zafar, Y., & Markham, P. G. (2003). Diversity of DNA β, a satellite molecule associated with some monopartite begomoviruses. Virology, 312(1), 106-121.

PMID: 12890625;Abstract:

DNA β molecules are symptom-modulating, single-stranded DNA satellites associated with monopartite begomoviruses (family Geminiviridae). Such molecules have thus far been shown to be associated with Ageratum yellow vein virus from Singapore and Cotton leaf curl Multan virus from Pakistan. Here, 26 additional DNA β molecules, associated with diverse plant species obtained from different geographical locations, were cloned and sequenced. These molecules were shown to be widespread in the Old World, where monopartite begomoviruses are known to occur. Analysis of the sequences revealed a highly conserved organization for DNA β molecules consisting of a single conserved open reading frame, an adenine-rich region, and a region of high sequence conservation [the satellite conserved region (SCR)]. The SCR contains a potential hairpin structure with the loop sequence TAA/GTATTAC; similar to the origins of replication of geminiviruses and nanoviruses. Two major groups of DNA β satellites were resolved by phylogenetic analyses. One group originated from hosts within the Malvaceae and the second from a more diverse group of plants within the Solanaceae and Compositae. Within the two clusters, DNA β molecules showed relatedness based both on host and geographic origin. These findings strongly support coadaptation of DNA β molecules with their respective helper begomoviruses. © 2003 Elsevier Science (USA). All rights reserved.

Brown, J. K. (2014). Molecular characterization of a naturally occurring intraspecific recombinant begomovirus with close relatives widespread in southern Arabia. Virology Journal, 11, 103.

Al-Saleh, M.A., Al-Shahwan, I.M., Brown, J.K., and Idris, A.M. 2014. Molecular characterization of a naturally occurring intraspecific recombinant begomovirus with close relatives widespread in southern Arabia. Virology Journal 11:103 doi:10.1186/1743-422X-11-103.

Thomas, J. C., Adams, D. G., Nessler, C. L., Brown, J. K., & Bohnert, H. J. (1995). Tryptophan decarboxylase, tryptamine, and reproduction of the whitefly. Plant Physiology, 109(2), 717-720.

Abstract:

Tryptophan decarboxylase (TDC) from Catharanthus roseus (periwinkle) converts tryptophan to the indole-alkaloid tryptamine. When the TDC gene was expressed in transgenic tobacco, the 55-kD TDC enzyme and tryptamine accumulated. Bemisia tabaci (sweetpotato whitefly) reproduction on transgenic plants decreased up to 97% relative to controls. Production of tryptamine, its derivatives, or other products resulting from TDC activity may discourage whitefly reproduction and provide a single-gene-based plant protection strategy.

Idris, A. M. (2002). Molecular analysis of Cotton leaf curl virus-Sudan reveals an evolutionary history of recombination. Virus Genes, 24(3).

Monopartite begomoviral DNAs (2761 bp) were cloned and sequenced from field cotton, okra, and Sida alba, from Gezira, and field okra from Shambat. Comparison of the four apparent full-length begomoviral DNAs revealed 99.3-99.5% shared nucleotide (nt) identity, indicating that they are the same viral species, hereafter, referred to as Cotton leaf curl virus-Sudan (CLCuV-SD). Host range studies revealed that the field okra isolate of CLCuV-SD was whitefly-transmissible from okra to okra, M. parviflora, and hollyhock, but not to cotton. In contrast, the cotton isolate of CLCuV-SD infected cotton and hollyhock, but not okra. The genome of CLCuV-SD encodes six open reading frames (ORFs), and was most closely related to other monopartite begomoviruses of the Eastern Hemisphere. CLCuV-SD shared highest nucleotide sequence identity (95.5%) with Okra enation virus (OkEV), but was distantly related (approximately 74% nt sequence identity) to begomoviruses isolated from cotton in Pakistan. While extensive genomic regions of CLCuV-SD and OkEV are highly conserved (approximately 99% nt identity), nt sequence identity of the V1 ORF encoding the coat protein was uncharacteristically low (87.9%), suggesting a history of recombination. An analysis conducted with Sawyer's GENECONV program support the recombination hypothesis, indicating that the V1 ORF and a small segment of the intergenic region of CLCuV-SD and OkEV were derived from other begomoviruses. As a BLAST analysis failed to identify a prospective extant source of either V1 ORF, the parental viruses serving as CP donors remain undiscovered or are extinct.

Pan, H., Chu, D., Yan, W., Qi, S. u., Liu, B., Wang, S., Qingjun, W. u., Xie, W., Jiao, X., Rumei, L. i., Yang, N., Yang, X., Baoyun, X. u., Brown, J. K., Zhou, X., & Zhang, Y. (2012). Rapid spread of tomato yellow leaf curl virus in china is aided differentially by two invasive whiteflies. PLoS ONE, 7(4).

PMID: 22514670;PMCID: PMC3325912;Abstract:

Background: Tomato yellow leaf curl virus (TYLCV) was introduced into China in 2006, approximately 10 years after the introduction of an invasive whitefly, Bemisia tabaci (Genn.) B biotype. Even so the distribution and prevalence of TYLCV remained limited, and the economic damage was minimal. Following the introduction of Q biotype into China in 2003, the prevalence and spread of TYLCV started to accelerate. This has lead to the hypothesis that the two biotypes might not be equally competent vectors of TYLCV. Methodology/Principal Findings: The infection frequency of TYLCV in the field-collected B. tabaci populations was investigated, the acquisition and transmission capability of TYLCV by B and Q biotypes were compared under the laboratory conditions. Analysis of B. tabaci populations from 55 field sites revealed the existence of 12 B and 43 Q biotypes across 18 provinces in China. The acquisition and transmission experiments showed that both B and Q biotypes can acquire and transmit the virus, however, Q biotype demonstrated superior acquisition and transmission capability than its B counterparts. Specifically, Q biotype acquired significantly more viral DNA than the B biotype, and reached the maximum viral load in a substantially shorter period of time. Although TYLCV was shown to be transmitted horizontally by both biotypes, Q biotype exhibited significantly higher viral transmission frequency than B biotype. Vertical transmission result, on the other hand, indicated that TYLCV DNA can be detected in eggs and nymphs, but not in pupae and adults of the first generation progeny. Conclusions/Significance: These combined results suggested that the epidemiology of TYLCV was aided differentially by the two invasive whiteflies (B and Q biotypes) through horizontal but not vertical transmission of the virus. This is consistent with the concomitant eruption of TYLCV in tomato fields following the recent rapid invasion of Q biotype whitefly in China. © 2012 Pan et al.