Bentley A Fane

Bentley A Fane

Professor, Plant Sciences
Professor, Applied BioSciences - GIDP
Professor, Genetics - GIDP
Professor, Immunobiology
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-6634

Work Summary

Upon infection, viruses must transport their genomes into cells and produce progeny, often under a strict time deadline. We study how the viral proteins interact with with each other and with host cell proteins to efficiently accomplish these processes.

Research Interest

Bentley A. Fane, PhD, is a Professor in the School of Plant Sciences, College of Agriculture and Life Sciences and holds a joint appointment in the Department of Immunobiology, Arizona College of Medicine. Dr. Fane has an international reputation for his research into virus structure, assembly and evolution. His research focuses on the viruses of the Microviridae, of which he is considered one of the leading experts. He has been instrumental in defining the biochemical and structural parameters that allow these viruses to replicate and produce progeny in as little as five minutes. The rapid lifecycle has facilitated in depth studies into how viruses evolved resistance mechanism to anti-viral proteins targeting particle assembly.He has published over 60 original research paper in leading scientific journals, including Nature, Molecular Cell, and Journal of Virology, in which his publications on the evolution of resistance mechanisms and kinetic traps have been selected by the journal editors as articles of “significant interest.” He is a frequent presenter at national and international meetings, and has been invited to State of the Art and plenary talks at give the American Society for Virology. He presently serves on the Editorial Boards of two leading virology journals: Virology and the Journal of Virology. At the University of Arizona, Dr. Fane has been actively involved in promoting undergraduate research has been honored with teaching awards on the department, college, and university levels. Keywords: Virus structure and assembly, Viral DNA translocation, Viral evolution

Publications

Cherwa, J. E., Young, L. N., & Fane, B. A. (2011). Uncoupling the functions of a multifunctional protein: the isolation of a DNA pilot protein mutant that affects particle morphogenesis. Virology, 411(1).

Defective øX174 H protein-mediated DNA piloting indirectly influences the entire viral lifecycle. Faulty piloting can mask the H protein's other functions or inefficient penetration may be used to explain defects in post-piloting phenomena. For example, optimal synthesis of other viral proteins requires de novo H protein biosynthesis. As low protein concentrations affect morphogenesis, protein H's assembly functions remain obscure. An H protein mutant was isolated that allowed morphogenetic effects to be characterized independent of its other functions. The mutant protein aggregates assembly intermediates. Although excess internal scaffolding protein restores capsid assembly, the resulting mutant H protein-containing particles are less infectious. In addition, nonviable phenotypes of am(H) mutants in Su+ hosts, which insert non-wild-type amino acids, do not always correlate with a lack of missense protein function. Phenotypes are highly influenced by host and phage physiology. This phenomenon was unique to am(H) mutants, not observed with amber mutants in other genes.

Skilton, R. J., Cutcliffe, L. T., Pickett, M. A., Lambden, P. R., Fane, B. A., & Clarke, I. N. (2007). Intracellular parasitism of chlamydiae: Specific infectivity of chlamydiaphage Chp2 in Chlamydophila abortus. Journal of Bacteriology, 189(13), 4957-4959.

PMID: 17468245;PMCID: PMC1913433;Abstract:

The obligate intracellular nature of chlamydiae presents challenges to the characterization of its phages, which are potential tools for a genetic transfer system. An assay for phage infectivity is described, and the infectious properties of phage Chp2 were determined. Copyright © 2007, American Society for Microbiology. All Rights Reserved.

Jennings, B., & Fane, B. A. (1997). Genetic analysis of the Φ174 DNA binding protein. Virology, 227(2), 370-377.

PMID: 9018136;Abstract:

The X174 J protein is 37 amino acids in length and contains 12 basic residues. There are no acidic amino acids in the protein. The basic residues are concentrated in two clusters in the N-terminus which are separated by a proline-rich region. To investigate the morphogenetic functions of the J protein and possible mechanisms by which it may bind DNA, a genetic analysis was conducted. Lysine→leucine and arginine→leucine substitutions were generated within the basic amino acid clusters. At least three substitutions were required to eliminate viability in vivo. Lethal mutants with three or four substitutions exhibit dominant lethal phenotypes, indicating that the mutant proteins retain enough function to interfere with productive assembly. In cells infected with a dominant lethal mutant, noninfectious packaged particles were produced. Infectivity can be restored by second-site suppressors in the viral coat protein which disrupt polar interactions atop the threefold axis of symmetry in the capsid. The viability of strains containing compensating frameshift mutations within the proline-rich region suggests that only the proline residues in this segment are critical for efficient function.

Sun, L., Rossmann, M. G., & Fane, B. A. (2014). High-resolution structure of a virally encoded DNA-translocating conduit and the mechanism of DNA penetration. Journal of Virology, 88(18), 10276-9.

The Journal of Virology invited us to submit this article in the GEM platform, which features key developments in virology. Although these articles are peer-reviewed and can report data, they are really more review-like than a manuscript reporting primary data.

Burch, A. D., & Fane, B. A. (2000). Foreign and chimeric external scaffolding proteins as inhibitors of Microviridae morphogenesis. Journal of Virology, 74(20), 9347-9352.

PMID: 11000202;PMCID: PMC112362;Abstract:

Viral assembly is an ideal system in which to investigate the transient recognition and interplay between proteins. During morphogenesis, scaffolding proteins temporarily associate with structural proteins, stimulating conformational changes that promote assembly and inhibit off-pathway reactions. Microviridae morphogenesis is dependent on two scaffolding proteins, an internal and an external species. The external scaffolding protein is the most conserved protein within the Microviridae, whose canonical members are φX174, G4, and α3. However, despite 70% homology on the amino acid level, overexpression of a foreign Microviridae external scaffolding protein is a potent cross-species inhibitor of morphogenesis. Mutants that are resistant to the expression of a foreign scaffolding protein cannot be obtained via one mutational step. To define the requirements for and constraints on scaffolding protein interactions, chimeric external scaffolding proteins have been constructed and analyzed for effects on in vivo assembly. The results of these experiments suggest that at least two cross-species inhibitory domains exist within these proteins; one domain most likely blocks procapsid formation, and the other allows procapsid assembly but blocks DNA packaging. A mutation conferring resistance to the expression of a chimeric protein (chiD(r)) that inhibits DNA packaging was isolated. The mutation maps to gene A, which encodes a protein essential for packaging. The chiD(r) mutation confers resistance only to a chimeric D protein; the mutant is still inhibited by the expression of foreign D proteins. The results presented here demonstrate how closely related proteins could be developed into antiviral agents that specifically target virion morphogenesis.