Andrew P Capaldi

Andrew P Capaldi

Associate Professor, Genetics - GIDP
Associate Professor, Molecular and Cellular Biology
Associate Professor, BIO5 Institute
Primary Department
Contact
(520) 626-9376

Research Interest

Research Interest
Andrew Capaldi, PhD, researches the signaling pathways and transcription factors in a cell that are organized into circuits. They allow cells to process information and make decisions. For Dr. Capaldi, the work arises in understanding both how these circuits are built from their components, and how they function and malfunction. To address these questions, he is working to reverse engineer the circuitry that controls cell growth in budding yeast using a combination of genomic, proteomic and computational methods. http://capaldilab.mcb.arizona.edu

Publications

Buchan, J. R., Capaldi, A. P., & Parker, R. (2012). TOR-tured yeast find a new way to stand the heat. Molecular cell, 47(2), 155-7.
BIO5 Collaborators
Ross Buchan, Andrew P Capaldi

In this issue, Takahara and Maeda (2012) discover that together, Pbp1 and sequestration of the TORC1 complex in cytoplasmic mRNP stress granules provides a negative regulatory mechanism for TORC1 signaling during stress.

Capaldi, A. P., Kleanthous, C., & Radford, S. E. (2002). Im7 folding mechanism: Misfolding on a path to the native state. Nature Structural Biology, 9(3), 209-216.

PMID: 11875516;Abstract:

Many proteins populate collapsed intermediate states during folding. In order to elucidate the nature and importance of these species, we have mapped the structure of the on-pathway intermediate of the four-helix protein, Im7, together with the conformational changes it undergoes as it folds to the native state. Kinetic data for 29 Im7 point mutants show that the intermediate contains three of the four helices found in the native structure, packed around a specific hydrophobic core. However, the intermediate contains many non-native interactions; as a result, hydrophobic interactions become disrupted in the rate-limiting transition state before the final helix docks onto the developing structure. The results of this study support a hierarchical mechanism of protein folding and explain why the misfolding of Im7 occurs. The data also demonstrate that non-native interactions can play a significant role in folding, even for small proteins with simple topologies.

Ferguson, N., Wei, L. i., Capaldi, A. P., Kleanthous, C., & Radford, S. E. (2001). Using chimeric immunity proteins to explore the energy landscape for α-helical protein folding. Journal of Molecular Biology, 307(1), 393-405.

PMID: 11243827;Abstract:

To address the role of sequence in the folding of homologous proteins, the folding and unfolding kinetics of the all-helical bacterial immunity proteins Im2 and Im9 were characterised, together with six chimeric derivatives of these proteins. We show that both Im2 and Im9 fold rapidly (kUNH2O ≈ 2000 s-1 at pH 7.0, 25°C) in apparent two-state transitions, through rate-limiting transition states that are highly compact (βTS 0.93 and 0.96, respectively). Whilst the folding and unfolding properties of three of the chimeras (Im2 (1-44)Im9, Im2 (1-64)Im9 and Im2 (25-44)Im9) are similar to their parental counterparts, in other chimeric proteins the introduced sequence variation results in altered kinetic behaviour. At low urea concentrations, Im2 (1-29)Im9 and Im2 (56-64)Im9 fold in two-state transitions via transition states that are significantly less compact (βTS ≈ 0.7) than those characterised for the other immunity proteins presented here. At higher urea concentrations, however, the rate-limiting transition state for these two chimeras switches or moves to a more compact species (βTS ≈ 0.9). Surprisingly, Im2 (30-64)Im9 populates a highly collapsed species (βI = 0.87) in the dead-time (2.5 ms) of stopped flow measurements. These data indicate that whilst topology may place significant constraints on the folding process, specific inter-residue interactions, revealed here through multiple sequence changes, can modulate the ruggedness of the folding energy landscape. © 2001 Academic Press.

Gorski, S. A., Capaldi, A. P., Kleanthous, C., & Radford, S. E. (2001). Acidic conditions stabilise intermediates populated during the folding of Im7 and Im9. Journal of Molecular Biology, 312(4), 849-863.

PMID: 11575937;Abstract:

The helical bacterial immunity proteins Im7 and Im9 have been shown to fold via kinetic mechanisms of differing complexity, despite having 60% sequence identity. At pH 7.0 and 10°C, Im7 folds in a three-state mechanism involving an on-pathway intermediate, while Im9 folds in an apparent two-state transition. In order to examine the folding mechanisms of these proteins in more detail, the folding kinetics of both Im7 and Im9 (at 10°C in 0.4 M sodium sulphate) have been examined as a function of pH. Kinetic modelling of the folding and unfolding data for Im7 between pH 5.0 and 8.0 shows that the on-pathway intermediate is stabilised by more acidic conditions, whilst the native state is destabilised. The opposing effect of pH on the stability of these states results in a significant population of the intermediate at equilibrium at pH 6.0 and below. At pH 7.0, the folding and unfolding kinetics for Im9 can be fitted adequately by a two-state model, in accord with previous results. However, under acidic conditions there is a clear change of slope in the plot of the logarithm of the folding rate constant versus denaturant concentration, consistent with the population of one or more intermediate(s) early during folding. The kinetic data for Im9 at these pH values can be fitted to a three-state model, where the intermediate ensemble is stabilised and the native state destabilised as the pH is reduced, rationalising previous results that showed that an intermediate is not observed experimentally at pH 7.0. The data suggest that intermediate formation is a general step in immunity protein folding and demonstrate that it is necessary to explore a wide range of refolding conditions in order to show that intermediates do not form in the folding of other small, single-domain proteins. © 2001 Academic Press.

Capaldi, A. P., C., M., Kleanthous, C., Roder, H., & Radford, S. E. (2001). Ultrarapid mixing experiments reveal that Im7 folds via an on-pathway intermediate. Nature Structural Biology, 8(1), 68-72.

PMID: 11135674;Abstract:

Many proteins populate partially organized structures during folding. Since these intermediates often accumulate within the dead time (2-5 ms) of conventional stopped-flow and quench-flow devices, it has been difficult to determine their role in the formation of the native state. Here we use a microcapillary mixing apparatus, with a time resolution of ∼150 μs, to directly follow the formation of an intermediate in the folding of a four-helix protein, Im7. Quantitative kinetic modeling of folding and unfolding data acquired over a wide range of urea concentrations demonstrate that this intermediate ensemble lies on a direct path from the unfolded to the native state.