Laurence Hurley

Laurence Hurley

Associate Director, BIO5 Institute
Professor, Medicinal Chemistry-Pharmaceutical Sciences
Professor, Medicinal Chemistry-Pharmacology and Toxicology
Professor, Cancer Biology - GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-5622

Work Summary

Laurence Hurley's long-time research interest is in molecular targeting of DNA, first by covalent binders (CC-1065 and psorospermin), then as compounds that target protein–DNA complexes (pluramycins and Et 743), and most recently as four-stranded DNA structures (G-quadruplexes and i-motifs). He was the first to show that targeting G-quadruplexes could inhibit telomerase (Sun et al. [1997] J. Med. Chem., 40, 2113) and that targeting G-quadruplexes in promoter complexes results in inhibition of transcription (Siddiqui-Jain et al. [2002] Proc. Natl. Acad. Sci. U.S.A., 99, 11593).

Research Interest

Laurence Hurley, PhD, embraces an overall objective to design and develop novel antitumor agents that will extend the productive lives of patients who have cancer. His research program in medicinal chemistry depends upon a structure-based approach to drug design that is intertwined with a clinical oncology program in cancer therapeutics directed by Professor Daniel Von Hoff at TGen at the Mayo Clinic in Scottsdale. Dr. Hurley directs a research group that consists of a team of graduate and postdoctoral students with expertise in structural and synthetic chemistry working alongside students in biochemistry and molecular biology. NMR and in vivo evaluations of novel agents are carried out in collaboration with other research groups in the Arizona Cancer Center. At present, they have a number of different groups of compounds that target a variety of intracellular receptors. These receptors include: (1) transcriptional regulatory elements, (2) those involved in cell signaling pathways, and (3) protein-DNA complexes, including transcriptional factor-DNA complexes.In close collaboration with Dr. Gary Flynn in Medicinal Chemistry, he has an ongoing program to target a number of important kinases, including aurora kinases A and B, p38, and B-raf. These studies involve structure-based approaches as well as virtual screening. Molecular modeling and synthetic medicinal chemistry are important tools.The protein–DNA complexes involved in transcriptional activation of promoter complexes using secondary DNA structures are also targets for drug design.

Publications

Warner, S. L., Munoz, R. M., Stafford, P., Koller, E., Hurley, L. H., D., D., & Han, H. (2006). Comparing Aurora A and Aurora B as molecular targets for growth inhibition of pancreatic cancer cells. Molecular Cancer Therapeutics, 5(10), 2450-2458.

PMID: 17041088;Abstract:

To address the increased need to understand the similarities and differences in targeting Aurora A or Aurora B for the treatment of cancer, we systematically evaluated the relative importance of Aurora A and/or Aurora B as molecular targets using antisense oligonucleotides. It was found that perturbations in Aurora A and Aurora B signaling result in growth arrest and a apoptosis preferentially in cancer cells. The biological fingerprints of Aurora A and Aurora B inhibition were compared and contrasted in efforts to identify the superior therapeutic target. Due to the different biological responses, we conclude that each Aurora kinase should be treated as autonomous drug targets, which can be targeted independently or in combination. We observed no advantages to targeting both kinases simultaneously and feel that an Aurora A-targeted therapy may have some beneficial consequences over an Aurora B -targeted therapy, such as mitotic arrest and the rapid induction of apoptosis. Copyright © 2006 American Association for Cancer Research.

Hahn, T., Fried, K., Hurley, L. H., & Akporiaye, E. T. (2009). Orally active α-tocopheryloxyacetic acid suppresses tumor growth and multiplicity of spontaneous murine breast cancer. Molecular Cancer Therapeutics, 8(6), 1570-1578.

PMID: 19509249;PMCID: PMC3693733;Abstract:

We recently demonstrated the antitumor efficacy of orally administered α-tocopheryloxyacetic acid (α-TEA), a redox silent and nonhydrolyzable derivative of naturally occurring vitamin E. In order to move α-TEA closer to the clinic to benefit patients with breast cancer, the present study had two goals. First, to determine the minimal effective treatment dose; and second, to test the efficacy of dietary administration of α-TEA in the clinically relevant MMTV-PyMT mouse model of spontaneous breast cancer that more closely resembles human disease. The minimal effective dose of α-TEA was evaluated in the transplantable 4T1 tumor model and we show a dose-dependent decrease of primary tumor growth and reduction of metastatic spread to the lung. Six-week-old MMTV-PyMT mice were treated with oral α-TEA for 9 weeks, with no apparent signs of drug toxicity. The α-TEA treatment delayed tumor development and significantly slowed tumor progression, resulting in a 6-fold reduction of the average cumulative tumor size. In addition, oral α-TEA caused an 80% reduction in spontaneous metastases. In situ analysis of tumor tissue identified apoptosis as an important mechanism of α-TEA-mediated tumor suppression in addition to inhibition of tumor cell proliferation. This study shows, for the first time, the ability of orally administered α-TEA to delay tumor onset and to inhibit the progression and metastatic spread of a clinically relevant model of spontaneous breast cancer. Our finding of the high efficacy in this tumor model highlights the translational potential of oral α-TEA therapy. Copyright © 2009 American Association for Cancer Research.

Raymond, E., Soria, J., Izbicka, E., Boussin, F., Hurley, L., & D., D. (2000). DNA G-quadruplexes, telomere-specific proteins and telomere-associated enzymes as potential targets for new anticancer drugs. Investigational New Drugs, 18(2), 123-137.

PMID: 10857992;Abstract:

Telomeres and telomerase have been subjects to a tremendous attention from scientists and oncologists during the past 5 years. This interest has been motivated by the potential of telomerase as a tumor marker for the diagnosis and the prognosis of cancer. The possible use of telomerase or telomeres as new targets for anticancer drugs also triggered investigations. The expression of telomerase was found in overall 85% of cancers. Telomerase is early expressed during oncogenesis with a gradient indicating that a high level of telomerase expression could be associated with a bad prognosis. Therefore, drugs targeting telomerase and telomeres might be useful in many human tumors with little restrictions regarding the tumor type or on the stage of the disease. Moreover, since telomerase is not or slightly expressed in normal cells, it has been postulated that drugs targeting telomerase would induce low toxicity. The race for the discovery of telomerase inhibitors has started while the identification of the components controlling telomerase, telomeres, cell survival, senescence, and apoptosis was still in progress. The recent identification of components regulating telomere length and telomerase expression (TRF1, TRF2, and tankyrase) opened a variety of new opportunities to control telomerase/telomere interactions. Meanwhile, a proof of principle was provided that changing telomere interactions with telomere binding proteins by chemical or biological means can induce cancer cell death. Interestingly, recent data challenge the old paradigm which suggested that a long exposure to telomerase and telomere inhibitors is necessary to induce anticancer effects. In this paper, we review the most recent information concerning the regulation of telomere length and telomerase expression, with emphasis on mechanisms that might translate into new drug discovery.

Wheelhouse, R. T., Sun, D., Han, H., Han, F. X., & Hurley, L. H. (1998). Cationic porphyrins as telomerase inhibitors: The interaction of tetra- (N-methyl-4-pyridyl)porphine with quadruplex DNA [1]. Journal of the American Chemical Society, 120(13), 3261-3262.
Hurley, L., Rezler, E. M., Bearss, D. J., & Hurley, L. -. (2002). Telomeres and telomerases as drug targets. Current opinion in pharmacology, 2(4).

Recent advances in telomerase inhibition have been achieved by using antisense oligonucleotides and ribozymes to target the telomerase mRNA or the telomerase RNA template. Also, small molecules are potent catalytic inhibitors of telomerase. However, therapeutic regimes incorporating these agents will be challenging to implement in the clinic because of their delayed effectiveness. Drugs that directly bind to the telomeres and stabilize secondary DNA structures such as G-quadruplexes are also potent inhibitors of telomerase and disrupt telomere structure. These G-quadruplex-interactive drugs could feasibly be used in synergy with more conventional cytotoxic agents to bring about more immediate responses in cancer cells that are less dependent upon telomere length. Recently, an emerging possible novel use of G-quadruplex-interactive drugs employs their ability to target G-quadruplexes in promoter regions of genes (such as c-MYC), which then serves to repress the production of the human telomerase reverse transcriptase protein.