Leslie Gunatilaka

Leslie Gunatilaka

Professor, Natural Resources and the Environment
Director, Natural Products Center
Professor, Pharmacology and Toxicology
Professor, Cancer Biology - GIDP
Professor, Arid Lands Resources Sciences - GIDP
Professor, BIO5 Institute
Contact
(520) 621-9932

Work Summary

Discovery of natural products from plants and their associated microorganisms as potential drugs to treat cancer. Application of medicinal chemistry approach for structure-activity relationship studies and to obtain compounds for preclinical evaluation. Development of alternative agricultural systems for sustainable utilization of natural resources.

Research Interest

Despite many therapeutic successes, cancer remains a major cause of mortality in the US. Natural products (NPs) represent the best source and inspiration for the discovery of drugs and molecular targets. Our aim is to discover effective and non-toxic NP-based anticancer drugs. Working with NCI we have recently discovered a class of plant-derived NPs useful in cancer immunotherapy. The main focus of our current research is to utilize medicinal chemistry approach to obtain their analogues for preclinical evaluation. Leslie Gunatilaka is Professor at the School of Natural Resources and the Environment and Director of the Natural Products Center. He is also Adjunct Professor of Department of Nutritional Sciences, and a member of the Arizona Cancer Center. He is a member of several professional societies, editorial boards, and pharmaceutical company advisory groups. He is a Fellow of the Academy of Sciences for the Developing World (TWAS), Italy, and the National Academy of Sciences, Sri Lanka. Dr. Gunatilaka has over 200 peer-reviewed publications and book chapters and over 150 communications in natural product science to his credit. He is the recipient of the Sri Lankan Presidents’ gold medal for “creating a center of excellence in natural products research at the University of Peradeniya, Sri Lanka” (1987), CaPCURE award for “dedication to ending prostate cancer as a risk for all men and their families” (2000), Research Faculty of the Year Award of the UA College of Agriculture and Life Sciences (2003), the UA Asian American Faculty, Staff and Alumni Association Outstanding Faculty Award (2005), and the UA Leading Edge Researcher Award for Innovative Research (2012). He has delivered over 100 invited lectures worldwide and was the Chief Guest and Plenary Lecturer at the International Herbal Medicine Conference held in Sri Lanka (2005), and the Keynote Speaker and the Guest of Honor at Chemtech-2007, an International Conference organized by the Institute of Chemistry, Ceylon. His current research interests include discovery, identification of protein targets, and structure-activity relationship (SAR) studies of natural product-based drugs to treat cancer, neurodegenerative, and other diseases from plants, and plant- and lichen-associated microorganisms, maximization of chemistry diversity and production of microbial and plant secondary metabolites, and scientific investigation of medicinal plants and herbal supplements. Keywords: Natural Product-Based Drug Discovery, Medicinal Chemistry, Cancer Immunotherapeutic Agents

Publications

Tukov, F. F., Anand, S., Sarma, R., A., A., Matthews, J. C., & Rimoldi, J. M. (2004). Inactivation of the cytotoxic activity of repin, a sesquiterpene lactone from Centaurea repens. Chemical Research in Toxicology, 17(9), 1170-1176.

PMID: 15377150;Abstract:

Prolonged ingestion of Yellow Starthistle (Centaurea solstitialis) and Russian Knapweed (Centaurea repens) by horses has been shown to result in a fatal neurodegenerative disorder called equine nigropallidal encephalomalacia (ENE). Bioassay-guided fractionation of extracts from Centaurea species using the PC12 cell line have led to the identification of one of several putative agents, which may contribute to ENE, namely, the sesquiterpene lactone (SQL) repin (1), previously linked to ENE due to its abundance in C. repens. To characterize the molecular basis of repin-induced neurotoxicity, the present study was designed to identify reactive functional groups that may contribute overall to its toxicity. The reaction of repin (1) with glutathione (GSH) led to the exclusive addition of GSH to the α-methylenebutyrolactone affording a GSH conjugate (3b) that lacked toxicity in the PC12 cell assay, while selective reduction of the α-methylenebutyrolactone double bond of 1 also resulted in an analogue (2) that was devoid of toxicity relative to the parent compound. Unlike repin, analogue 2 failed to decrease cellular dopamine levels in PC12 cells, further substantiating the requirement of the α- methylenebutyrolactone group. Results from this study are suggestive that GSH depletion by the SQL repin may be a primary event in the etiology of ENE, increasing the susceptibility to oxidative damage.

Gunatilaka, L., Xu, Y., Wijeratne, K., Babyak, A. L., Brooks, A. D., Tewary, P., Marks, H. R., Xuan, L., Wang, W., & Sayers, T. J. (2017). Withanolides from Aeroponically Grown Physalis peruviana and Their Selective Cytotoxicity to Prostate Cancer and Renal Carcinoma Cells. Journal of Natural Products, 80, 1981-1991. doi:10.1021/acs.jnatprod.6b01129
Gunatilaka, A. L., Shekhar-Guturja, T., Gunaherath, G. B., Wijeratne, E. K., Lambert, J., Averette, A. F., Bahn, Y., Tripodi, F., Ammar, R., Sanglard, D., Andes, D., Nislow, C., Coccetti, P., Gingras, A., Heitman, J., & Cowen, L. E. (2016). Dual Action Small Molecule Potentiates Antifungal Efficacy, Blocks the Evolution of Drug Resistance, and Renders Resistant Pathogens Responsive to Therapy via Modulation of Multidrug Efflux and TOR Signaling. Nature Chemical Biology, 12, 867-875.
Gunatilaka, A. L., Berger, J. M., Evans, R., Miller, J. S., Wisse, J. H., Neddermann, K. M., Bursuker, I., & G., D. (2001). Isolation, synthesis, and structure - Activity relationships of bioactive benzoquinones from Miconia lepidota from the suriname rainforest. Journal of Natural Products, 64(1), 2-5.

PMID: 11170656;Abstract:

Bioactivity-directed fractionation of an EtOAc extract from the leaves of Miconia lepidota afforded the two benzoquinones 2-methoxy-6-heptyl-1,4-benzoquinone (1) and 2-methoxy-6-pentyl-1,4-benzoquinone (primin) (2). This is the first reported isolation of 1. Both quinones 1 and 2 exhibited activity toward mutant yeast strains based on Saccharomyces cerevisiae, indicative of their cytotoxicity and potential anticancer activity. A number of previously synthesized and new analogues were prepared and tested in the same strains. Compounds 1, 2, 2-methoxy-6-butyl-1,4-benzoquinone (5), and 2-methoxy-6-decyl-1,4-benzoquinone (6) were tested in two cytotoxicity assays. In the M109 tumor cell lines, quinones 1, 2, and 6 had an IC50 value of 10 μg/mL. In the A2780 cell line, compounds 1, 2 and 5 had IC50 values of 7.9, 2.9, and 3.2/ μg/mL, respectively.

Santagata, S., Xu, Y., M., E., Kontnik, R., Rooney, C., Perley, C. C., Kwon, H., Clardy, J., Kesari, S., Whitesell, L., Lindquist, S., & A., A. (2012). Using the heat-shock response to discover anticancer compounds that target protein homeostasis. ACS Chemical Biology, 7(2), 340-349.

PMID: 22050377;PMCID: PMC3291478;Abstract:

Unlike normal tissues, cancers experience profound alterations in protein homeostasis. Powerful innate adaptive mechanisms, especially the transcriptional response regulated by Heat Shock Factor 1 (HSF1), are activated in cancers to enable survival under these stressful conditions. Natural products that further tax these stress responses can overwhelm the ability to cope and could provide leads for the development of new, broadly effective anticancer drugs. To identify compounds that drive the HSF1-dependent stress response, we evaluated over 80,000 natural and synthetic compounds as well as partially purified natural product extracts using a reporter cell line optimized for high-throughput screening. Surprisingly, many of the strongly active compounds identified were natural products representing five diverse chemical classes (limonoids, curvularins, withanolides, celastraloids, and colletofragarones). All of these compounds share the same chemical motif, an α,β- unsaturated carbonyl functionality, with strong potential for thiol-reactivity. Despite the lack of a priori mechanistic requirements in our primary phenotypic screen, this motif was found to be necessary albeit not sufficient, for both heat-shock activation and inhibition of glioma tumor cell growth. Within the withanolide class, a promising therapeutic index for the compound withaferin A was demonstrated in vivo using a stringent orthotopic human glioma xenograft model in mice. Our findings reveal that diverse organisms elaborate structurally complex thiol-reactive metabolites that act on the stress responses of heterologous organisms including humans. From a chemical biology perspective, they define a robust approach for discovering candidate compounds that target the malignant phenotype by disrupting protein homeostasis. © 2011 American Chemical Society.