Matthew Hj Cordes

Matthew Hj Cordes

Associate Professor, Chemistry and Biochemistry-Sci
Associate Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-1175

Research Interest

Matthew Cordes, Ph.D. is an Associate Professor of Chemistry and Biochemistry at the University of Arizona College of Science. Dr. Cordes’ research focuses on the origin and evolution of new protein structures and functions. He has published approximately 30 original research papers and presents his work frequently at national meetings such as the Protein Society and Gordon Research Conferences on Proteins and Biopolymers. Dr. Cordes’ primary research contributions are in four fields of protein evolution. First, his laboratory has identified cases in which a new type of protein structure has evolved from a preexisting structure. Second, he has identified evolutionary codes by which proteins that bind specific sites on double-stranded DNA evolve to recognize new target sites. Third, he studies the evolution of proteins in bloodsucking insects and spiders that affect blood homeostasis or cause dermonecrotic effects in mammalian tissue. Finally, he uses bioinformatics to identify hidden patterns in protein sequences that allow them to fold correctly and avoid aggregation such as that which occurs in Alzheimer’s disease. Dr. Cordes presently holds a BIO5 pilot project seed grant to study the evolution of enzyme toxins in brown spider venom.

Publications

Degnan, P. H., Michalowski, C. B., Babić, A. C., Cordes, M. H., & Little, J. W. (2007). Conservation and diversity in the immunity regions of wild phages with the immunity specificity of phage λ. Molecular Microbiology, 64(1), 232-244.

PMID: 17376085;Abstract:

The gene regulatory circuitry of phage λ is among the best-understood circuits. Much of the circuitry centres around the immunity region, which includes genes for two repressors, CI and Cro, and their cis-acting sites. Related phages, termed lambdoid phages, have different immunity regions, but similar regulatory circuitry and genome organization to that of λ, and show a mosaic organization, arising by recombination between lambdoid phages. We sequenced the immunity regions of several wild phages with the immunity specificity of λ, both to determine whether natural variation exists in regulation, and to analyse conservation and variability in a region rich in well-studied regulatory elements. CI, Cro and their cis-acting sites are almost identical to those in λ, implying that regulatory mechanisms controlled by the immunity region are conserved. A segment adjacent to one of the operator regions is also conserved, and may be a novel regulatory element. In most isolates, different alleles of two regulatory proteins (N and CII) flank the immunity region; possibly the lysis-lysogeny decision is more variable among isolates. Extensive mosaicism was observed for several elements flanking the immunity region. Very short sequence elements or microhomologies were also identified. Our findings suggest mechanisms by which fine-scale mosaicism arises. © 2007 The Authors.

Hall, B. M., Roberts, S. A., Heroux, A. M., & Cordes, M. H. (2008). Two structures of a lambda Cro variant highlight dimer flexibility but disfavor major dimer distortions upon specific binding of cognate DNA. Journal of Molecular Biology, 375(3).

Previously reported crystal structures of free and DNA-bound dimers of lambda Cro differ strongly (about 4 A backbone rmsd), suggesting both flexibility of the dimer interface and induced-fit protein structure changes caused by sequence-specific DNA binding. Here, we present two crystal structures, in space groups P3(2)21 and C2 at 1.35 and 1.40 A resolution, respectively, of a variant of lambda Cro with three mutations in its recognition helix (Q27P/A29S/K32Q, or PSQ for short). One dimer structure (P3(2)21; PSQ form 1) resembles the DNA-bound wild-type Cro dimer (1.0 A backbone rmsd), while the other (C2; PSQ form 2) resembles neither unbound (3.6 A) nor bound (2.4 A) wild-type Cro. Both PSQ form 2 and unbound wild-type dimer crystals have a similar interdimer beta-sheet interaction between the beta1 strands at the edges of the dimer. In the former, an infinite, open beta-structure along one crystal axis results, while in the latter, a closed tetrameric barrel is formed. Neither the DNA-bound wild-type structure nor PSQ form 1 contains these interdimer interactions. We propose that beta-sheet superstructures resulting from crystal contact interactions distort Cro dimers from their preferred solution conformation, which actually resembles the DNA-bound structure. These results highlight the remarkable flexibility of lambda Cro but also suggest that sequence-specific DNA binding may not induce large changes in the protein structure.

Cordes, M. H., Walsh, N. P., McKnight, C. J., & Sauer, R. T. (1999). Evolution of a protein fold in vitro. Science, 284(5412), 325-8.

A "switch" mutant of the Arc repressor homodimer was constructed by interchanging the sequence positions of a hydrophobic core residue, leucine 12, and an adjacent surface polar residue, asparagine 11, in each strand of an intersubunit beta sheet. The mutant protein adopts a fold in which each beta strand is replaced by a right-handed helix and side chains in this region undergo significant repacking. The observed structural changes allow the protein to maintain solvent exposure of polar side chains and optimal burial of hydrophobic side chains. These results suggest that new protein folds can evolve from existing folds without drastic or large-scale mutagenesis.

Dodds, E. D., Blackwell, A. E., Jones, C. M., Holso, K. L., O'Brien, D. J., Cordes, M. H., & Wysocki, V. H. (2011). Determinants of gas-phase disassembly behavior in homodimeric protein complexes with related yet divergent structures. Analytical Chemistry, 83(10), 3881-3889.

PMID: 21486017;PMCID: PMC3094495;Abstract:

The overall structure of a protein-protein complex reflects an intricate arrangement of noncovalent interactions. Whereas intramolecular interactions confer secondary and tertiary structure to individual subunits, intermolecular interactions lead to quaternary structure-the ordered aggregation of separate polypeptide chains into multisubunit assemblies. The specific ensemble of noncovalent contacts dictates the stability of subunit folds, enforces protein-protein binding specificity, and determines multimer stability. Consequently, noncovalent architecture is likely to play a role in the gas-phase dissociation of these assemblies during tandem mass spectrometry (MS/MS). To further advance the applicability of MS/MS to analytical problems in structural biology, a better understanding of the interplay between the structures and fragmentation behaviors of noncovalent protein complexes is essential. The present work constitutes a systematic study of model protein homodimers (bacteriophage N15 Cro, bacteriophage λ Cro, and bacteriophage P22 Arc) with related but divergent structures, both in terms of subunit folds and protein-protein interfaces. Because each of these dimers has a well-characterized structure (solution and/or crystal structure), specific noncovalent features could be correlated with gas-phase disassembly patterns as studied by collision-induced dissociation, surface-induced dissociation, and ion mobility. Of the several respects in which the dimers differed in structure, the presence or absence of intermolecular electrostatic contacts exerted the most significant influence on the gas-phase dissociation behavior. This is attributed to the well-known enhancement of ionic interactions in the absence of bulk solvent. Because salt bridges are general contributors to both intermolecular and intramolecular stability in protein complexes, these observations are broadly applicable to aid in the interpretation or prediction of dissociation spectra for noncovalent protein assemblies. © 2011 American Chemical Society.

Hall, B. M., Lefevre, K. R., & Cordes, M. H. (2005). Sequence correlations between Cro recognition helices and cognate O(R) consensus half-sites suggest conserved rules of protein-DNA recognition. Journal of Molecular Biology, 350(4).

The O(R) regions from several lambdoid bacteriophages contain the three regulatory sites O(R)1, O(R)2 and O(R)3, to which the Cro and CI proteins can bind. These sites show imperfect dyad symmetry, have similar sequences, and generally lie on the same face of the DNA double helix. We have developed a computational method, which analyzes the O(R) regions of additional phages and predicts the location of these three sites. After tuning the method to predict known O(R) sites accurately, we used it to predict unknown sites, and ultimately compiled a database of 32 known and predicted O(R) binding site sets. We then identified sequences of the recognition helices (RH) for the cognate Cro proteins through manual inspection of multiple sequence alignments. Comparison of Cro RH and consensus O(R) half-site sequences revealed strong one-to-one correlations between two amino acids at each of three RH positions and two bases at each of three half-site positions (H1-->2, H3-->5 and H6-->6). In each of these three cases, one of the two amino acid/base-pairings corresponds to a contact observed in the crystal structure of a lambda Cro/consensus operator complex. The alternate amino acid/base combinations were rationalized using structural models. We suggest that the pairs of amino acid residues act as binary switches that efficiently modulate specificity for different consensus half-site variants during evolution. The observation of structurally reasonable amino acid-to-base correlations suggests that Cro proteins share some common rules of recognition despite their functional and structural diversity.