Monica Kraft
Chair, Department of Medicine
Professor, BIO5 Institute
Professor, Medicine
Primary Department
Department Affiliations
(520) 626-7174
Work Summary
Monica Kraft's research focus is in the areas of adult asthma, the role of infection in asthma and the role of the distal lung in asthma and airway remodeling.
Research Interest
Monica Kraft, MD, is chair of the Department of Medicine at the University of Arizona College of Medicine – Tucson, and the Robert and Irene Flinn Endowed Professor of Medicine.Prior to joining the UA in 2014, Dr. Kraft was at Duke University, where she served as chief of the Division of Pulmonary, Allergy and Critical Care, as the Charles C. Johnson, MD, Distinguished Professor of Medicine, and as director of the Duke Asthma, Allergy and Airway Center. As vice chair for research in the Duke University Department of Medicine from 2009-2013, Dr. Kraft implemented several important initiatives to support the department’s research endeavors and was instrumental in the re-submission and renewal of Duke’s National Institutes of Health-funded Clinical Translational Science Award (CTSA).Dr. Kraft has more than 150 publications in the areas of adult asthma, the role of infection in asthma and the role of the distal lung in asthma and airway remodeling. Her work has appeared in such prestigious publications as the Journal of the American Medical Association, The Lancet, the American Journal of Respiratory and Critical Care Medicine, the Journal of Allergy and Clinical Immunology, and Chest. Her work has been funded by the National Institutes of Health and the American Lung Association.

Publications

Ledford, J., Addison, K., Guerra, S., Rojas Quintero, J., Owen, C., Martinez, F., & Kraft, M. (2016). “Club cell secretory protein deficiency leads to altered lung function in naïve mice. Journal of Allergy and Clinical Immunology.
BIO5 Collaborators
Stefano Guerra, Monica Kraft
Kraft, M., & Martin, R. J. (1995). Chronobiology and chronotherapy in medicine. Disease-a-month : DM, 41(8), 506-75.

There is a fascinating and exceedingly important area of medicine that most of us have not been exposed to at any level of our medical training. This relatively new area is termed chronobiology; that is, how time-related events shape our daily biologic responses and apply to any aspect of medicine with regard to altering pathophysiology and treatment response. For example, normally occurring circadian (daily cycles, approximately 24 hours) events, such as nadirs in epinephrine and cortisol levels that occur in the body around 10 PM to 4 AM and elevated histamine and other mediator levels that occur between midnight and 4 AM, play a major role in the worsening of asthma during the night. In fact, this nocturnal exacerbation occurs in the majority of asthmatic patients. Because all biologic functions, including those of cells, organs, and the entire body, have circadian, ultradian (less than 22 hours), or infradian (greater than 26 hours) rhythms, understanding the pathophysiology and treatment of disease needs to be viewed with these changes in mind. Biologic rhythms are ingrained, and although they can be changed over time by changing the wake-sleep cycle, these alterations occur over days. However, sleep itself can adversely affect the pathophysiology of disease. The non-light/dark influence of biologic rhythms was first described in 1729 by the French astronomer Jean-Jacques de Mairan. Previously, it was presumed that the small red flowers of the plant Kalanchoe bloss feldiuna opened in the day because of the sunlight and closed at night because of the darkness. When de Mairan placed the plant in total darkness, the opening and closing of the flowers still occurred on its intrinsic circadian basis. It is intriguing to think about how the time of day governs the pathophysiology of disease. On awakening in the morning, heart rate and blood pressure briskly increase, as do platelet aggregability and other clotting factors. This can be linked to the acrophase (peak event) of heart attacks. During the afternoon we hit our best mental and physical performance, which explains why most of us state that "I am not a morning person." Even the tolerance for alcohol varies over the 24-hour cycle, with best tolerance around 5 pm (i.e. "Doctor, I only have a couple of highballs before dinner"). Thus, all biologic functions, from those of the cell, the tissue, the organs, and the entire body, run on a cycle of altering activity and function.(ABSTRACT TRUNCATED AT 400 WORDS)

Lewis, C. C., Chu, H. W., Westcott, J. Y., Sutherland, E. R., Stevens, A. D., Metze, T. L., & Kraft, M. (2003). Increased expression of platelet-derived growth factor receptor-beta in airway fibroblasts of severe asthmatics. Chest, 123(3 Suppl), 428S-9S.
Deykin, A., Wechsler, M. E., Boushey, H. A., Chinchilli, V. M., Kunselman, S. J., Craig, T. J., DiMango, E., Fahy, J. V., Kraft, M., Leone, F., Lazarus, S. C., Lemanske, R. F., Martin, R. J., Pesola, G. R., Peters, S. P., Sorkness, C. A., Szefler, S. J., Israel, E., & , N. H. (2007). Combination therapy with a long-acting beta-agonist and a leukotriene antagonist in moderate asthma. American journal of respiratory and critical care medicine, 175(3), 228-34.

Long-acting beta-agonists (LABAs) and inhaled corticosteroids administered together appear to be complementary in terms of effects on asthma control. The elements of asthma control achieved by LABAs (improved lung function) and leukotriene receptor antagonists (LTRAs; protection against exacerbations) may be complementary as well.

Szefler, S. J., Martin, R. J., King, T. S., Boushey, H. A., Cherniack, R. M., Chinchilli, V. M., Craig, T. J., Dolovich, M., Drazen, J. M., Fagan, J. K., Fahy, J. V., Fish, J. E., Ford, J. G., Israel, E., Kiley, J., Kraft, M., Lazarus, S. C., Lemanske, R. F., Mauger, E., , Peters, S. P., et al. (2002). Significant variability in response to inhaled corticosteroids for persistent asthma. The Journal of allergy and clinical immunology, 109(3), 410-8.

A clinical model is needed to compare inhaled corticosteroids (ICSs) with respect to efficacy.