Sean W Limesand
Chair, Institutional Animal Care-USE Committee
Director, Agriculture Research Complex
Professor, Animal and Comparative Biomedical Sciences
Professor, BIO5 Institute
Professor, Obstetrics and Gynecology
Professor, Physiological Sciences - GIDP
Primary Department
Department Affiliations
(520) 626-8903
Work Summary
Our current research program use an integrative approach at the whole animal, isolated organ, cellular and molecular levels to investigate developmental adaptations in pancreatic β-cells and insulin sensitivity that result from early life risk factors, such as intrauterine growth restriction, and increase risk of glucose intolerance and Diabetes in later life.
Research Interest
Sean W. Limesand, PhD, is an Associate Professor in the School of Animal and Comparative Biomedical Sciences at the University of Arizona in the College of Agriculture and Life Sciences. He is also a member of the UA’s BIO5 Institute and Department of Obstetrics and Gynecology. Dr. Limesand is nationally and internationally recognized for his work studying fetal endocrinology and metabolism in pregnancy and in pregnancies compromised by pathology such as intrauterine growth restriction and diabetes. His research is focused on defining developmental consequences resulting from a compromised intrauterine environment. Specifically, he is focused on fetal adaptations in insulin secretion and action that when altered in utero create lifelong metabolic complications. Dr. Limesand has lead the charge on prenatal origins of –cell dysfunction as the Principal Investigator for a number of federal and foundation grant awards and published more than 40 peer-reviewed articles on topics related to this research. Keywords: Diabetes, Pregnancy, Perinatal Biology


Cole, L., Anderson, M., Antin, P. B., & Limesand, S. W. (2009). One process for pancreatic beta-cell coalescence into islets involves an epithelial-mesenchymal transition. The Journal of endocrinology, 203(1), 19-31.
BIO5 Collaborators
Parker B Antin, Sean W Limesand

Islet replacement is a promising therapy for treating diabetes mellitus, but the supply of donor tissue for transplantation is limited. To overcome this limitation, endocrine tissue can be expanded, but this requires an understanding of normal developmental processes that regulate islet formation. In this study, we compare pancreas development in sheep and human, and provide evidence that an epithelial-mesenchymal transition (EMT) is involved in beta-cell differentiation and islet formation. Transcription factors know to regulate pancreas formation, pancreatic duodenal homeobox factor 1, neurogenin 3, NKX2-2, and NKX6-1, which were expressed in the appropriate spatial and temporal pattern to coordinate pancreatic bud outgrowth and direct endocrine cell specification in sheep. Immunofluorescence staining of the developing pancreas was used to co-localize insulin and epithelial proteins (cytokeratin, E-cadherin, and beta-catenin) or insulin and a mesenchymal protein (vimentin). In sheep, individual beta-cells become insulin-positive in the progenitor epithelium, then lose epithelial characteristics, and migrate out of the epithelial layer to form islets. As beta-cells exit the epithelial progenitor cell layer, they acquire mesenchymal characteristics, shown by their acquisition of vimentin. In situ hybridization expression analysis of the SNAIL family members of transcriptional repressors (SNAIL1, -2, and -3; listed as SNAI1, -2, -3 in the HUGO Database) showed that each of the SNAIL genes was expressed in the ductal epithelium during development, and SNAIL-1 and -2 were co-expressed with insulin. Our findings provide strong evidence that the movement of beta-cells from the pancreatic ductal epithelium involves an EMT.

Kelly, A. C., Camacho, L. E., Pendarvis, K., Davenport, H. M., Steffens, N. R., Smith, K. E., Weber, C. S., Lynch, R. M., Papas, K. K., & Limesand, S. W. (2018). Adrenergic receptor stimulation suppresses oxidative metabolism in isolated rat islets and Min6 cells. Molecular and cellular endocrinology.
BIO5 Collaborators
Sean W Limesand, Ronald M Lynch

Insulin secretion is stimulated by glucose metabolism and inhibited by catecholamines through adrenergic receptor stimulation. We determined whether catecholamines suppress oxidative metabolism in β-cells through adrenergic receptors. In Min6 cells and isolated rat islets, epinephrine decreased oxygen consumption rates compared to vehicle control or co-administration of epinephrine with α2-adrenergic receptor antagonist yohimbine. Epinephrine also decreased forskolin-stimulated oxygen consumption rates, indicating cAMP dependent and independent actions. Furthermore, glucose oxidation rates were decreased with epinephrine, independent of the exocytosis of insulin, which was blocked with yohimbine. We evaluated metabolic targets through proteomic analysis after 4 h epinephrine exposure that revealed 466 differentially expressed proteins that were significantly enriched for processes including oxidative metabolism, protein turnover, exocytosis, and cell proliferation. These results demonstrate that acute α2-adrenergic stimulation suppresses glucose oxidation in β-cells independent of nutrient availability and insulin exocytosis, while cAMP concentrations are elevated. Proteomics and immunoblots revealed changes in electron transport chain proteins that were correlated with lower metabolic reducing equivalents, intracellular ATP concentrations, and altered mitochondrial membrane potential implicating a new role for adrenergic control of mitochondrial function and ultimately insulin secretion.

Camacho, L. E., Yates, D. T., Davenport, H. M., Allen, R. E., & Limesand, S. W. (2016). Decreased Satellite Cell Proliferation Rates Contribute to Small Fibers in the Semitendinosus Muscle of Intrauterine Growth Restricted Lambs.. REPRODUCTIVE SCIENCES, 23, 316A-317A.
Camacho, L. E., Chen, X., Hay, W. W., & Limesand, S. W. (2017). Enhanced insulin secretion and insulin sensitivity in young lambs with placental insufficiency-induced intrauterine growth restriction. American journal of physiology. Regulatory, integrative and comparative physiology, 313(2), R101-R109.

Intrauterine growth restriction (IUGR) is associated with persistent metabolic complications, but information is limited for IUGR infants. We determined glucose-stimulated insulin secretion (GSIS) and insulin sensitivity in young lambs with placental insufficiency-induced IUGR. Lambs with hyperthermia-induced IUGR (n = 7) were compared with control lambs (n = 8). GSIS was measured at 8 ± 1 days of age, and at 15 ± 1 days, body weight-specific glucose utilization rates were measured with radiolabeled d-glucose during a hyperinsulinemic-euglycemic clamp (HEC). IUGR lambs weighed 23% less (P

Kelly, A. C., Steyn, L. V., Kitzmann, J. P., Anderson, M. J., Mueller, K. R., Hart, N. J., Lynch, R. M., Papas, K. K., & Limesand, S. W. (2014). Function and expression of sulfonylurea, adrenergic, and glucagon-like peptide 1 receptors in isolated porcine islets. Xenotransplantation, 21(4), 385-91.
BIO5 Collaborators
Sean W Limesand, Ronald M Lynch

The scarcity of human cadaveric pancreata limits large-scale application of islet transplantation for patients with diabetes. Islets isolated from pathogen-free pigs provide an economical and abundant alternative source assuming immunologic barriers are appropriate. Membrane receptors involved in insulin secretion that also have potential as imaging targets were investigated in isolated porcine islets. Quantitative (q)PCR revealed that porcine islets express mRNA transcripts for sulfonylurea receptor 1 (Sur1), inward rectifying potassium channel (Kir6.2, associated with Sur1), glucagon-like peptide 1 receptor (GLP1R), and adrenergic receptor alpha 2A (ADRα2A). Receptor function was assessed in static incubations with stimulatory glucose concentrations, and in the presence of receptor agonists. Glibenclamide, an anti-diabetic sulfonylurea, and exendin-4, a GLP-1 mimetic, potentiated glucose-stimulated insulin secretion >2-fold. Conversely, epinephrine maximally reduced insulin secretion 72 ± 9% (P