Anna R Dornhaus

Anna R Dornhaus

Professor, Ecology and Evolutionary Biology
Professor, Entomology / Insect Science - GIDP
Professor, Psychology
Professor, Neuroscience
Professor, Neuroscience - GIDP
Professor, Cognitive Science - GIDP
Professor, BIO5 Institute
Primary Department
Contact
(520) 626-8586

Research Interest

Dr. Anna Dornhaus Ph.D., is Associate Professor of Ecology and Evolutionary Biology, Physiology and the BIO5 Institute. Dr. Dornhaus received her B.S. and Ph.D. in Zoology at the University of Würzburg and is currently an Associate Professor of Ecology & Evolutionary Biology at the University of Arizona. She specializes in the organization of groups as well as how collective behaviors emerge from the actions and interactions of individuals. Her model systems seek data in social insect colonies (bumble bees, honey bees and ants) in the laboratory and in the field, as well as using mathematical and individual-based modeling approaches. Dr. Dornhaus investigates mechanisms of coordination in foraging, collective decision-making, task allocation and division of labor. Dr. Dornhaus’ recent work has included the role of communication in the allocation of foragers to food sources; the evolution of different recruitment systems in different species of bees, and how ecology shapes these recruitment systems; house hunting strategies in ants; speed-accuracy trade offs in decision-making; and whether different group sizes necessitate different organizational strategies.

Publications

Jandt, J. M., Bengston, S., Pinter-Wollman, N., Pruitt, J. N., Raine, N. E., Dornhaus, A., & Sih, A. (2014). Behavioural syndromes and social insects: Personality at multiple levels. Biological Reviews, 89(1), 48-67.

Abstract:

Animal personalities or behavioural syndromes are consistent and/or correlated behaviours across two or more situations within a population. Social insect biologists have measured consistent individual variation in behaviour within and across colonies for decades. The goal of this review is to illustrate the ways in which both the study of social insects and of behavioural syndromes has overlapped, and to highlight ways in which both fields can move forward through the synergy of knowledge from each. Here we, (i) review work to date on behavioural syndromes (though not always referred to as such) in social insects, and discuss mechanisms and fitness effects of maintaining individual behavioural variation within and between colonies; (ii) summarise approaches and principles from studies of behavioural syndromes, such as trade-offs, feedback, and statistical methods developed specifically to study behavioural consistencies and correlations, and discuss how they might be applied specifically to the study of social insects; (iii) discuss how the study of social insects can enhance our understanding of behavioural syndromes-research in behavioural syndromes is beginning to explore the role of sociality in maintaining or developing behavioural types, and work on social insects can provide new insights in this area; and (iv) suggest future directions for study, with an emphasis on examining behavioural types at multiple levels of organisation (genes, individuals, colonies, or groups of individuals). © 2013 Cambridge Philosophical Society.

Cao, T. T., & Dornhaus, A. (2012). Ants use pheromone markings in emigrations to move closer to food-rich areas. Insectes Sociaux, 59(1), 87-92.

Abstract:

Nest site quality can affect survival and reproduction, and thus many animals have evolved behaviors which facilitate nest site assessment and selection. Ants of the genus Temnothorax have been shown to include an array of nest site attributes when choosing such a site. Here, we show that they also include traits of the habitat surrounding nest sites. In particular, we found that during emigration, ants preferred to move to nests located close to a previously explored food-rich area. We also determined that scent markings played a role in this choice and that scouts and transporting ants may have tracked scent marks laid in foraging, and this behavior could have biased emigration toward nests located near previously foraged areas. These results indicate that pheromones play a bigger role in Temnothorax foraging and decision making in emigration than previously thought. Overall, this work provides new insights into the mechanisms involved in habitat selection in ants and contributes to our understanding of collective behavior in social insects in general. © 2011 International Union for the Study of Social Insects (IUSSI).

Jandt, J. M., & Dornhaus, A. (2009). Spatial organization and division of labour in the bumble bee Bombus impatiens. Animal Behaviour, 77(3), 641-651.

Abstract:

Individuals in many types of animal groups show both reproductive and task-related division of labour. In some social insect species, such division of labour may be related to the spatial organization of workers inside the nest. We examined colonies of bumblebees and found that (1) 11-13% of workers maintained small spatial fidelity zones inside the nest, and all workers tended to remain at a specific distance from the colony centre independent of their age; (2) smaller individuals maintained smaller spatial zones and tended to be closer to the centre; and (3) individuals that were more likely to perform the in-nest task of larval feeding tended to remain in the centre of the nest, whereas foragers were more often found on the periphery of the nest when not foraging. Individuals that performed other tasks did not maintain a predictable distance to the centre, and there was no evidence that spatial preferences changed over time. Instead, spatial patterns may result from inherent differences between individuals in terms of activity level, and may be a self-organized sorting mechanism that influences division of labour among workers.

Dornhaus, A., & Chittka, L. (2005). Bumble bees (Bombus terrestris) store both food and information in honeypots. Behavioral Ecology, 16(3), 661-666.

Abstract:

Social insect foragers often transmit information about food sources to nest mates. In bumble bees (Bombus terrestris), for example, successful foragers use excited motor displays and a pheromone as communication signals. In addition, bees could make use of an indirect pathway of information flow, via the honey stores. We show here that, indeed, bees in the nest continuously monitor honeypots and sample their contents, thus obtaining information on supply and demand of nectar. When there is an influx of nectar into the nest, the colony deploys more workers for foraging. The number of new foragers depends on sugar concentration. Foragers returning with high-quality sugar solution display more "excited runs" on the nest structure. The recruits' response, however, does not depend on modulated behavior by foragers: more workers start to forage with high quality of incoming nectar, even when this nectar is brought by a pipette. Moreover, we show that the readiness of bees to respond to recruitment signals or incoming nectar also depends on colony demand. When colony nectar stores are full, the response of bees to equal amounts of nectar influx is smaller than when stores are empty. When colony nectar stores are depleted, foragers spend more time running excitedly and less time probing pots in the nest and run with higher average speed, possibly to disperse the alerting pheromone more efficiently. However, more bees respond to nectar influx to empty stores, whether or not this is accompanied by forager signals. Thus, honeypots serve to store information as well as food. © The Author 2005. Published by Oxford University Press on behalf of the International Society for Behavioral Ecology. All rights reserved.

Jones, E. I., & Dornhaus, A. (2011). Predation risk makes bees reject rewarding flowers and reduce foraging activity. Behavioral Ecology and Sociobiology, 65(8), 1505-1511.

Abstract:

In the absence of predators, pollinators can often maximize their foraging success by visiting the most rewarding flowers. However, if predators use those highly rewarding flowers to locate their prey, pollinators may benefit from changing their foraging preferences to accept less rewarding flowers. Previous studies have shown that some predators, such as crab spiders, indeed hunt preferentially on the most pollinator-attractive flowers. In order to determine whether predation risk can alter pollinator preferences, we conducted laboratory experiments on the foraging behavior of bumble bees (Bombus impatiens) when predation risk was associated with a particular reward level (measured here as sugar concentration). Bees foraged in arenas containing a choice of a high-reward and a low-reward artificial flower. On a bee's first foraging trip, it was either lightly squeezed with forceps, to simulate a crab spider attack, or was allowed to forage safely. The foragers' subsequent visits were recorded for between 1 and 4 h without any further simulated attacks. Compared to bees that foraged safely, bees that experienced a simulated attack on a low-reward artificial flower had reduced foraging activity. However, bees attacked on a high-reward artificial flower were more likely to visit low-reward artificial flowers on subsequent foraging trips. Forager body size, which is thought to affect vulnerability to capture by predators, did not have an effect on response to an attack. Predation risk can thus alter pollinator foraging behavior in ways that influence the number and reward level of flowers that are visited. © 2011 Springer-Verlag.