Bentley A Fane

Bentley A Fane

Professor, Plant Sciences
Professor, Applied BioSciences - GIDP
Professor, Genetics - GIDP
Professor, Immunobiology
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-6634

Work Summary

Upon infection, viruses must transport their genomes into cells and produce progeny, often under a strict time deadline. We study how the viral proteins interact with with each other and with host cell proteins to efficiently accomplish these processes.

Research Interest

Bentley A. Fane, PhD, is a Professor in the School of Plant Sciences, College of Agriculture and Life Sciences and holds a joint appointment in the Department of Immunobiology, Arizona College of Medicine. Dr. Fane has an international reputation for his research into virus structure, assembly and evolution. His research focuses on the viruses of the Microviridae, of which he is considered one of the leading experts. He has been instrumental in defining the biochemical and structural parameters that allow these viruses to replicate and produce progeny in as little as five minutes. The rapid lifecycle has facilitated in depth studies into how viruses evolved resistance mechanism to anti-viral proteins targeting particle assembly.He has published over 60 original research paper in leading scientific journals, including Nature, Molecular Cell, and Journal of Virology, in which his publications on the evolution of resistance mechanisms and kinetic traps have been selected by the journal editors as articles of “significant interest.” He is a frequent presenter at national and international meetings, and has been invited to State of the Art and plenary talks at give the American Society for Virology. He presently serves on the Editorial Boards of two leading virology journals: Virology and the Journal of Virology. At the University of Arizona, Dr. Fane has been actively involved in promoting undergraduate research has been honored with teaching awards on the department, college, and university levels. Keywords: Virus structure and assembly, Viral DNA translocation, Viral evolution

Publications

Cherwa Jr., J. E., Sanchez-Soria, P., Birkholz, J. A., Dineen, H. A., Grippi, D. C., Kempton, T. L., Kwan, J., Patel, N. N., Toussaint, B. M., Wichman, H. A., & Fane, B. A. (2009). Viral adaptation to an antiviral protein enhances the fitness level to above that of the uninhibited wild type. Journal of Virology, 83(22), 11746-11750.

PMID: 19726521;PMCID: PMC2772694;Abstract:

Viruses often evolve resistance to antiviral agents. While resistant strains are able to replicate in the presence of the agent, they generally exhibit lower fitness than the wild-type strain in the absence of the inhibitor. In some cases, resistant strains become dependent on the antiviral agent. However, the agent rarely, if ever, elevates dependent strain fitness above the uninhibited wild-type level. This would require an adaptive mechanism to convert the antiviral agent into a beneficial growth factor. Using an inhibitory scaffolding protein that specifically blocks ΦX174 capsid assembly, we demonstrate that such mechanisms are possible. To obtain the quintuple-mutant resistant strain, the wild-type virus was propagated for approximately 150 viral life cycles in the presence of increasing concentrations of the inhibitory protein. The expression of the inhibitory protein elevated the strain's fitness significantly above the uninhibited wild-type level. Thus, selecting for resistance coselected for dependency, which was characterized and found to operate on the level of capsid nucleation. To the best of our knowledge, this is the first report of a virus evolving a mechanism to productively utilize an antiviral agent to stimulate its fitness above the uninhibited wild-type level. The results of this study may be predictive of the types of resistant phenotypes that could be selected by antiviral agents that specifically target capsid assembly. Copyright © 2009, American Society for Microbiology. All Rights Reserved.

Fane, B., Novak, C. R., & Fane, B. A. (2004). The functions of the N terminus of the phiX174 internal scaffolding protein, a protein encoded in an overlapping reading frame in a two scaffolding protein system. Journal of molecular biology, 335(1).

phiX174 utilizes two scaffolding proteins during morphogenesis, an internal protein (B) and an external protein (D). The B protein induces a conformational change in coat protein pentamers, enabling them to interact with both spike and external scaffolding proteins. While functions of the carboxyl terminus of protein B have been defined, the functions of the amino terminus remain obscure. To investigate the morphogenetic functions of the amino terminus, several 5' deleted genes were constructed and the proteins expressed in vivo. The DeltaNH(2) B proteins were assayed for the ability to complement an ochre B mutant and defects in the morphogenetic pathway were characterized. The results of the biochemical, genetic and second-site genetic analyses indicate that the amino terminus induces conformational changes in the viral coat protein and facilitates minor spike protein incorporation. Defects in conformational switching can be suppressed by substitutions in the external scaffolding protein, suggesting some redundancy of function between the two proteins.

Everson, J. S., Garner, S. A., Fane, B., Liu, B. -., Lambden, P. R., & Clarke, I. N. (2002). Biological properties and cell tropism of Chp2, a bacteriophage of the obligate intracellular bacterium Chlamydophila abortus. Journal of Bacteriology, 184(10), 2748-2754.

PMID: 11976304;PMCID: PMC135034;Abstract:

A number of bacteriophages belonging to the Microviridae have been described infecting chlamydiae. Phylogenetic studies divide the Chlamydiaceae into two distinct genera, Chlamydia and Chlamydophila, containing three and six different species, respectively. In this work we investigated the biological properties and host range of the recently described bacteriophage Chp2 that was originally discovered in Chlamydophila abortus. The obligate intracellular development cycle of chlamydiae has precluded the development of quantitative approaches to assay bacteriophage infectivity. Thus, we prepared hybridomas secreting monoclonal antibodies (monoclonal antibodies 40 and 55) that were specific for Chp2. We demonstrated that Chp2 binds both C. abortus elementary bodies and reticulate bodies in an enzyme-linked immunosorbent assay. Monoclonal antibodies 40 and 55 also detected bacteriophage Chp2 antigens in chlamydia-infected eukaryotic cells. We used these monoclonal antibodies to monitor the ability of Chp2 to infect all nine species of chlamydiae. Chp2 does not infect members of the genus Chlamydia (C. trachomatis, C. suis, or C. muridarum). Chp2 can infect C. abortus, C. felis, and C. pecorum but is unable to infect other members of this genus, including C. caviae and C. pneumoniae, despite the fact that these chlamydial species support the replication of very closely related bacteriophages.

Gordon, E. B., & Fane, B. A. (2013). Effects of an early conformational switch defect during φX174 morphogenesis are belatedly manifested late in the assembly pathway. Journal of Virology, 87(5), 2518-2525.

PMID: 23255785;PMCID: PMC3571406;Abstract:

C-terminal, aromatic amino acids in the φX174 internal scaffolding protein B mediate conformational switches in the viral coat protein. These switches direct the coat protein through early assembly. In addition to the aromatic amino acids, two acidic residues, D111 and E113, form salt bridges with basic, coat protein side chains. Although salt bridge formation did not appear to be critical for assembly, the substitution of an aromatic amino acid for D111 produced a lethal phenotype. This side chain is uniquely oriented toward the center of the coat-scaffolding binding pocket, which is heavily dominated by aromatic ring-ring interactions. Thus, the D111Y substitution may restructure pocket contacts. Previously characterized B- mutants blocked assembly before procapsid formation. However, the D111Y mutant produced an assembled particle, which contained the structural and external scaffolding proteins but lacked protein B and DNA. A suppressor within the external scaffolding protein, which mediates the later stages of particle morphogenesis, restored viability. The unique formation of a postprocapsid particle and the novel suppressor may be indicative of a novel B protein function. However, genetic data suggest that the particle represents the delayed manifestation of an early assembly error. This seemingly late-acting defect was rescued by previously characterized suppressors of early, preprocapsid, B- assembly mutations, which act on the level of coat protein flexibility. Likewise, the newly isolated suppressor in the external scaffolding protein also exhibited a global suppressing phenotype. Thus, the off-pathway product isolated from infected cells may not accurately reflect the temporal nature of the initial defect. © 2013, American Society for Microbiology.

Gordon, E. B., Knuff, C. J., & Fane, B. A. (2012). Conformational switch-defective ΦX174 internal scaffolding proteins kinetically trap assembly intermediates before procapsid formation. Journal of Virology, 86(18), 9911-9918.

PMID: 22761377;PMCID: PMC3446603;Abstract:

Conformational switching is an overarching paradigm in which to describe scaffolding protein-mediated virus assembly. However, rapid morphogenesis with small assembly subunits hinders the isolation of early morphogenetic intermediates in most model systems. Consequently, conformational switches are often defined by comparing the structures of virions, procapsids and aberrantly assembled particles. In contrast, øX174 morphogenesis proceeds through at least three preprocapsid intermediates, which can be biochemically isolated. This affords a detailed analysis of early morphogenesis and internal scaffolding protein function. Amino acid substitutions were generated for the six C-terminal, aromatic amino acids that mediate most coat-internal scaffolding protein contacts. The biochemical characterization of mutant assembly pathways revealed two classes of molecular defects, protein binding and conformational switching, a novel phenotype. The conformational switch mutations kinetically trapped assembly intermediates before procapsid formation. Although mutations trapped different particles, they shared common second-site suppressors located in the viral coat protein. This suggests a fluid assembly pathway, one in which the scaffolding protein induces a single, coat protein conformational switch and not a series of sequential reactions. In this model, an incomplete or improper switch would kinetically trap intermediates. © 2012, American Society for Microbiology.