Bernard W Futscher

Bernard W Futscher

Assistant Research Scientist, Cancer Center Division
Associate Professor, BIO5 Institute
Investigator, Center for Toxicology
Professor, Pharmacology and Toxicology
Professor, Cancer Biology - GIDP
Primary Department
Department Affiliations
Contact
(520) 626-4646

Work Summary

Bernard Futscher's lab is studying the molecular origins of human cancer. Understanding epigenetic dysfunction in human cancer has been Dr. Futscher's primary research focus since establishing his own independent laboratory. This epigenetic research has moved into the area of noncoding RNAs and their potential role in cancer cell immortality.

Research Interest

Bernard Futscher, PhD, and his lab focus on the molecular origins of human cancer. More specifically, the lab group has 3 inter-related research objectives based on the underlying concept that developing an in-depth understanding of epigenetic mechanismsresponsible for governing cell fate will allow for the development of more effective strategies for the prevention, treatment, and cure of cancer. First, they wish to identify which epigenetic mechanisms participate in the transcriptional control of genes important to growth and differentiation. Second, they seek to determine how these epigenetic mechanisms, and therefore epigenetic homeostasis, become compromised during oncogenesis. Third, using a new and more complete understanding of epigenetic control of the genome, Dr. Futscher and his team are developing rational new therapeutic strategies that seek to repair these defects in the cancer cell and transcriptionally reprogram the malignant cancer cell to a benign state. To reach their objectives, a variety of in vitro models of cancer have been developed to address emerging hypotheses that are inferred from the literature in basic and clinical science as well as our own data. Results from these in vitro studies are then translated to the clinical situation to determine their meaning in the actual clinical face of the disease. Similarly, they attempt to take information obtained from the genome-wide assessment of clinical specimens in order to help guide our thinking and develop new hypotheses that can be tested experimentally in our in vitro models.

Publications

Teoh-Fitzgerald, M. L., Fitzgerald, M. P., Jensen, T. J., Futscher, B. W., & Domann, F. E. (2012). Genetic and epigenetic inactivation of extracellular superoxide dismutase promotes an invasive phenotype in human lung cancer by disrupting ECM homeostasis. Molecular Cancer Research, 10(1), 40-51.

PMID: 22064654;PMCID: PMC3262094;Abstract:

Extracellular superoxide dismutase (EcSOD) is an important superoxide scavenger in the lung in which its loss, sequence variation, or abnormal expression contributes to lung diseases; however, the role of EcSOD in lung cancer has yet to be studied. We hypothesized that EcSOD loss could affect malignant progression in lung, and could be either genetic or epigenetic in nature. To test this, we analyzed EcSOD expression, gene copy number, promoter methylation, and chromatin accessibility in normal lung and carcinoma cells.Wefound that normal airway epithelial cells expressed abundant EcSOD and had an unmethylated promoter, whereas EcSOD-negative lung cancer cells displayed aberrant promoter hypermethylation and decreased chromatin accessibility. 5-aza-dC induced EcSOD suggesting that cytosine methylation was causal, in part, to silencing. In 48/50 lung tumors, EcSOD mRNA was significantly lower as early as stage I, and the EcSODpromoter was hypermethylated in 8/10 (80%) adenocarcinomas compared with 0/5 normal lung samples. In addition, 20% of the tumors showed loss of heterozygosity (LOH) of EcSOD. Reexpression of EcSOD attenuated the malignant phenotype of lung carcinoma cells by significantly decreasing invasion and survival. Finally, EcSOD decreased heparanase and syndecan-1 mRNAs in part by reducing NF-κB. By contrast, MnSOD and CuZnSOD showed no significant changes in lung tumors and had no effect on heparanase expression. Taken together, the loss of EcSOD expression is unique among the superoxide dismutases in lung cancer and is the result of EcSOD promoter methylation and LOH, suggesting that its early loss may contribute to ECM remodeling and malignant progression. ©2011 AACR.

Dodge, J. E., List, A. F., & Futscher, B. W. (1998). Selective variegated methylation of the p15 CpG island in acute myeloid leukemia. International Journal of Cancer, 78(5), 561-567.

PMID: 9808523;Abstract:

Both p15 and p16 are tumor suppressor genes that have 5' CpG islands; aberrant cytosine methylation of these islands has been associated with silencing of their expression. Deoxycytidine kinase (dCK) converts prodrugs to their cytotoxic form, has a 5' CpG island and is a candidate gene for inactivation by hypermethylation. In our study, we used sodium bisulfite sequencing to generate high resolution maps of 5-methylcytosine in the CpG islands associated with p15, p16 and dCK in normal human bone marrow (BM), peripheral blood lymphocytes (PBL) and cytosine arabinoside (ara-C)-resistant acute myeloid leukemia (AML) patients, and established human hematopoietic tumor cell lines. In normal cells the p15, p16 and dCK CpG islands were largely unmethylated. The p16 and dCK CpG islands were also unmethylated in the 8 AML specimens. In contrast, the p15 CpG island was aberrantly methylated in 6 of the 8 AML specimens. Furthermore, bisulfite sequencing revealed that the p15 CpG island is heterogeneously methylated in AML, with large intra-individual and inter-individual variability.

Muñoz-Rodríguez, J. L., Vrba, L., Futscher, B. W., Hu, C., Komenaka, I. K., Meza-Montenegro, M. M., Gutierrez-Millan, L. E., Daneri-Navarro, A., Thompson, P. A., & Martinez, M. E. (2015). Differentially expressed microRNAs in postpartum breast cancer in Hispanic women. PloS one, 10(4), e0124340.
BIO5 Collaborators
Bernard W Futscher, Chengcheng Hu

The risk of breast cancer transiently increases immediately following pregnancy; peaking between 3-7 years. The biology that underlies this risk window and the effect on the natural history of the disease is unknown. MicroRNAs (miRNAs) are small non-coding RNAs that have been shown to be dysregulated in breast cancer. We conducted miRNA profiling of 56 tumors from a case series of multiparous Hispanic women and assessed the pattern of expression by time since last full-term pregnancy. A data-driven splitting analysis on the pattern of 355 miRNAs separated the case series into two groups: a) an early group representing women diagnosed with breast cancer ≤ 5.2 years postpartum (n = 12), and b) a late group representing women diagnosed with breast cancer ≥ 5.3 years postpartum (n = 44). We identified 15 miRNAs with significant differential expression between the early and late postpartum groups; 60% of these miRNAs are encoded on the X chromosome. Ten miRNAs had a two-fold or higher difference in expression with miR-138, miR-660, miR-31, miR-135b, miR-17, miR-454, and miR-934 overexpressed in the early versus the late group; while miR-892a, miR-199a-5p, and miR-542-5p were underexpressed in the early versus the late postpartum group. The DNA methylation of three out of five tested miRNAs (miR-31, miR-135b, and miR-138) was lower in the early versus late postpartum group, and negatively correlated with miRNA expression. Here we show that miRNAs are differentially expressed and differentially methylated between tumors of the early versus late postpartum, suggesting that potential differences in epigenetic dysfunction may be operative in postpartum breast cancers.

Crowley-Weber, C. L., Payne, C. M., Gleason-Guzman, M., Watts, G. S., Futscher, B., Waltmire, C. N., Crowley, C., Dvorakova, K., Bernstein, C., Craven, M., Garewal, H., & Bernstein, H. (2002). Development and molecular characterization of HCT-116 cell lines resistant to the tumor promoter and multiple stress-inducer, deoxycholate. Carcinogenesis, 23(12), 2063-2080.

PMID: 12507930;Abstract:

Evidence from live cell bioassays shows that the flat mucosa from patients with colon cancer exhibits resistance to bile salt-induced apoptosis. Three independent cell lines derived from the colonic epithelial cell line HCT-116 were selected for resistance to bile salt-induced apoptosis. These cell lines were developed as tissue culture models of apoptosis resistance. Selection was carried out for resistance to apoptosis induced by sodium deoxycholate (NaDOC), the bile salt found in highest concentrations in human fecal water. Cultures of HCT-116 cells were serially passaged in the presence of increasing concentrations of NaDOC. The resulting apoptosis resistant cells were able to grow at concentrations of NaDOC (0.5 mM) that cause apoptosis in a few hours in unselected HCT-116 cells. These cells were then analyzed for changes in gene expression. Observations from cDNA microarray, 2-D gel electrophoresis/MALDI-mass spectroscopy, and confocal microscopy of immunofluorescently stained preparations indicated underexpression or overexpression of numerous genes at either the protein or mRNA level. Genes that may play a role in apoptosis and early stage carcinogenesis have been identified as upregulated in these cell lines, including Grp78, Bcl-2, NF-κB50), NF-κB(p65), thioredoxin peroxidase (peroxiredoxin) 2, peroxiredoxin 4, maspin, guanylate cyclase activating protein-1, PKCζ, EGFR, Ras family members, PKA, PI(4,5)K, TRAF2 and BIRC1 (IAP protein). Under-expressed mRNAs included BNIP3, caspase-6, caspase-3 and serine protease 11. NF-κB was constitutively activated in all three resistant cell lines, and was responsible, in part, for the observed apoptosis resistance, determined using antisense oligonucleotide strategies. Molecular and cellular analyses of these resistant cell lines has suggested potential mechanisms by which apoptosis resistance may develop in the colonic epithelium in response to high concentrations of hydrophobic bile acids that are associated with a Western-style diet. These analyses provide the rationale for the development of hypothesis-driven intermediate biomarkers to assess colon cancer risk on an individual basis.

Garbe, J. C., Vrba, L., Sputova, K., Fuchs, L., Novak, P., Brothman, A. R., Jackson, M., Chin, K., LaBarge, M. A., Watts, G., Futscher, B. W., & Stampfer, M. R. (2014). Immortalization of normal human mammary epithelial cells in two steps by direct targeting of senescence barriers does not require gross genomic alterations. Cell cycle (Georgetown, Tex.), 13(21), 3423-35.

Telomerase reactivation and immortalization are critical for human carcinoma progression. However, little is known about the mechanisms controlling this crucial step, due in part to the paucity of experimentally tractable model systems that can examine human epithelial cell immortalization as it might occur in vivo. We achieved efficient non-clonal immortalization of normal human mammary epithelial cells (HMEC) by directly targeting the 2 main senescence barriers encountered by cultured HMEC. The stress-associated stasis barrier was bypassed using shRNA to p16(INK4); replicative senescence due to critically shortened telomeres was bypassed in post-stasis HMEC by c-MYC transduction. Thus, 2 pathologically relevant oncogenic agents are sufficient to immortally transform normal HMEC. The resultant non-clonal immortalized lines exhibited normal karyotypes. Most human carcinomas contain genomically unstable cells, with widespread instability first observed in vivo in pre-malignant stages; in vitro, instability is seen as finite cells with critically shortened telomeres approach replicative senescence. Our results support our hypotheses that: (1) telomere-dysfunction induced genomic instability in pre-malignant finite cells may generate the errors required for telomerase reactivation and immortalization, as well as many additional "passenger" errors carried forward into resulting carcinomas; (2) genomic instability during cancer progression is needed to generate errors that overcome tumor suppressive barriers, but not required per se; bypassing the senescence barriers by direct targeting eliminated a need for genomic errors to generate immortalization. Achieving efficient HMEC immortalization, in the absence of "passenger" genomic errors, should facilitate examination of telomerase regulation during human carcinoma progression, and exploration of agents that could prevent immortalization.