Bernard W Futscher

Bernard W Futscher

Assistant Research Scientist, Cancer Center Division
Associate Professor, BIO5 Institute
Investigator, Center for Toxicology
Professor, Pharmacology and Toxicology
Professor, Cancer Biology - GIDP
Primary Department
Department Affiliations
Contact
(520) 626-4646

Work Summary

Bernard Futscher's lab is studying the molecular origins of human cancer. Understanding epigenetic dysfunction in human cancer has been Dr. Futscher's primary research focus since establishing his own independent laboratory. This epigenetic research has moved into the area of noncoding RNAs and their potential role in cancer cell immortality.

Research Interest

Bernard Futscher, PhD, and his lab focus on the molecular origins of human cancer. More specifically, the lab group has 3 inter-related research objectives based on the underlying concept that developing an in-depth understanding of epigenetic mechanismsresponsible for governing cell fate will allow for the development of more effective strategies for the prevention, treatment, and cure of cancer. First, they wish to identify which epigenetic mechanisms participate in the transcriptional control of genes important to growth and differentiation. Second, they seek to determine how these epigenetic mechanisms, and therefore epigenetic homeostasis, become compromised during oncogenesis. Third, using a new and more complete understanding of epigenetic control of the genome, Dr. Futscher and his team are developing rational new therapeutic strategies that seek to repair these defects in the cancer cell and transcriptionally reprogram the malignant cancer cell to a benign state. To reach their objectives, a variety of in vitro models of cancer have been developed to address emerging hypotheses that are inferred from the literature in basic and clinical science as well as our own data. Results from these in vitro studies are then translated to the clinical situation to determine their meaning in the actual clinical face of the disease. Similarly, they attempt to take information obtained from the genome-wide assessment of clinical specimens in order to help guide our thinking and develop new hypotheses that can be tested experimentally in our in vitro models.

Publications

Lang, J., Zhu, W., Nokes, B., Sheth, G., Novak, P., Fuchs, L., Watts, G., Futscher, B., Mineyev, N., Ring, A., LeBeau, L., Nagle, R., & Cranmer, L. (2015). Characterization of a novel radiation-induced sarcoma cell line. Journal of surgical oncology, 111(6), 669-82.

Radiation-induced sarcoma (RIS) is a potential complication of cancer treatment. No widely available cell line models exist to facilitate studies of RIS.

Costello, J. F., Futscher, B. W., Kroes, R. A., & Pieper, R. O. (1994). Methylation-related chromatin structure is associated with exclusion of transcription factors from and suppressed expression of the O-6-methylguanine DNA methyltransferase gene in human glioma cell lines. Molecular and Cellular Biology, 14(10), 6515-6521.

PMID: 7523853;PMCID: PMC359181;Abstract:

There is considerable interest in identifying factors responsible for expression of the O-6-methylguanine DNA methyltransferase (MGMT) gene, as MGMT is a major determinant in the response of glioma cells to the chemotherapeutic agent 1,3 bis(2-chloroethyl)-1-nitrosourea. Recently we have shown that MGMT expression is correlated in a direct, graded fashion with methylation in the body of the MGMT gene and in an inverse, graded fashion with promoter methylation in human glioma cell lines. To determine if promoter methylation is an important component of MGMT expression, this study addressed the complex interactions between methylation, chromatin structure, and in vivo transcription factor occupancy in the MGMT promoter of glioma cell lines with different levels of MGMT expression. Our results show that the basal promoter in MGMT-expressing glioma cell lines, which is 100% unmethylated, was very accessible to restriction enzymes at all sites tested, suggesting that this region may be nucleosome free. The basal promoter in glioma cells with minimal MGMT expression, however, which is 75% unmethylated, was much less accessible, and the basal promoter in nonexpressing cells, which is 50% unmethylated, was entirely inaccessible to restriction enzymes. Despite the presence of the relevant transcription factors in all cell lines examined, in vivo footprinting showed DNA-protein interactions at six Sp1 binding sites and one novel binding site in MGMT-expressing cell lines but no such interactions in nonexpressors. We conclude that in contrast to findings of previous in vitro studies, Sp1 is an important component of MGMT transcription. These correlations also strongly suggest that methylation and chromatin structure, by determining whether Sp1 and other transcription factors can access the MGMT promoter, set the transcriptional state of the MGMT gene.

Oshiro, M. M., Kim, C. J., Wozniak, R. J., Junk, D. J., Muñoz-Rodríguez, J. L., Burr, J. A., Fitzgerald, M., Pawar, S. C., Cress, A. E., Domann, F. E., & Futscher, B. W. (2005). Epigenetic silencing of DSC3 is a common event in human breast cancer.. Breast cancer research : BCR., 7(5), R669-680.

PMID: 16168112;PMCID: PMC1242132;Abstract:

INTRODUCTION: Desmocollin 3 (DSC3) is a member of the cadherin superfamily of calcium-dependent cell adhesion molecules and a principle component of desmosomes. Desmosomal proteins such as DSC3 are integral to the maintenance of tissue architecture and the loss of these components leads to a lack of adhesion and a gain of cellular mobility. DSC3 expression is down-regulated in breast cancer cell lines and primary breast tumors; however, the loss of DSC3 is not due to gene deletion or gross rearrangement of the gene. In this study, we examined the prevalence of epigenetic silencing of DSC3 gene expression in primary breast tumor specimens. METHODS: We used bisulfite genomic sequencing to analyze the methylation state of the DSC3 promoter region from 32 primary breast tumor specimens. We also used a quantitative real-time RT-PCR approach, and analyzed all breast tumor specimens for DSC3 expression. Finally, in addition to bisulfite sequencing and RT-PCR, we used an in vivo nuclease accessibility assay to determine the chromatin architecture of the CpG island region from DSC3-negative breast cancer cells lines. RESULTS: DSC3 expression was downregulated in 23 of 32 (72%) breast cancer specimens comprising: 22 invasive ductal carcinomas, 7 invasive lobular breast carcinomas, 2 invasive ductal carcinomas that metastasized to the lymph node, and a mucoid ductal carcinoma. Of the 23 specimens showing a loss of DSC3 expression, 13 (56%) were associated with cytosine hypermethylation of the promoter region. Furthermore, DSC3 expression is limited to cells of epithelial origin and its expression of mRNA and protein is lost in a high proportion of breast tumor cell lines (79%). Lastly, DNA hypermethylation of the DSC3 promoter is highly correlated with a closed chromatin structure. CONCLUSION: These results indicate that the loss of DSC3 expression is a common event in primary breast tumor specimens, and that DSC3 gene silencing in breast tumors is frequently linked to aberrant cytosine methylation and concomitant changes in chromatin structure.

Severson, P. L., Vrba, L., Stampfer, M. R., & Futscher, B. W. (2014). Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells. Mutation research. Genetic toxicology and environmental mutagenesis, 775-776, 48-54.

Genetic mutations are known to drive cancer progression and certain tumors have mutation signatures that reflect exposures to environmental carcinogens. Benzo[a]pyrene (BaP) has a known mutation signature and has proven capable of inducing changes to DNA sequence that drives normal pre-stasis human mammary epithelial cells (HMEC) past a first tumor suppressor barrier (stasis) and toward immortality. We analyzed normal, pre-stasis HMEC, three independent BaP-derived post-stasis HMEC strains (184Aa, 184Be, 184Ce) and two of their immortal derivatives(184A1 and 184BE1) by whole exome sequencing. The independent post-stasis strains exhibited between 93 and 233 BaP-induced mutations in exons. Seventy percent of the mutations were C:G>A:T transversions, consistent with the known mutation spectrum of BaP. Mutations predicted to impact protein function occurred in several known and putative cancer drivers including p16, PLCG1, MED12, TAF1 in 184Aa; PIK3CG, HSP90AB1, WHSC1L1, LCP1 in 184Be and FANCA, LPP in 184Ce. Biological processes that typically harbor cancer driver mutations such as cell cycle, regulation of cell death and proliferation, RNA processing, chromatin modification and DNA repair were found to have mutations predicted to impact function in each of the post-stasis strains. Spontaneously immortalized HMEC lines derived from two of the BaP-derived post-stasis strains shared greater than 95% of their BaP-induced mutations with their precursor cells. These immortal HMEC had 10 or fewer additional point mutations relative to their post-stasis precursors, but acquired chromosomal anomalies during immortalization that arose independent of BaP. The results of this study indicate that acute exposures of HMEC to high dose BaP recapitulate mutation patterns of human tumors and can induce mutations in a number of cancer driver genes.

Jensen, T. J., Wozniak, R. J., Eblin, K. E., Wnek, S. M., Gandolfi, A. J., & Futscher, B. W. (2009). Epigenetic mediated transcriptional activation of WNT5A participates in arsenical-associated malignant transformation. Toxicology and Applied Pharmacology, 235(1), 39-46.

PMID: 19061910;Abstract:

Arsenic is a human carcinogen with exposure associated with cancer of the lung, skin, and bladder. Many potential mechanisms have been implicated as playing a role in the process of arsenical-induced malignancy including the perturbation of signaling pathways and aberrant epigenetic regulation. We initiated studies to examine the role of a member of the non-canonical WNT signaling pathway, WNT5A, in UROtsa cells and arsenite [URO-ASSC] and monomethylarsonous acid [URO-MSC] malignantly transformed variants. We present data herein that suggest that WNT5A is transcriptionally activated during arsenical-induced malignant transformation. This WNT5A transcriptional activation is correlated with the enrichment of permissive histone modifications and the reduction of repressive modifications in the WNT5A promoter region. The epigenetic activation of WNT5A expression and acetylation of its promoter remain after the removal of the arsenical, consistent with the maintenance of an anchorage independent growth phenotype in these cells. Additionally, treatment with epigenetic modifying drugs supports a functional role for these epigenetic marks in controlling gene expression. Reduction of WNT5A using lentiviral shRNA greatly attenuated the ability of these cells to grow in an anchorage independent fashion. Extension of our model into human bladder cancer cell lines indicates that each of the cell lines examined also express WNT5A. Taken together, these data suggest that the epigenetic remodeling of the WNT5A promoter is correlated with its transcriptional activation and this upregulation likely participates in arsenical-induced malignant transformation. © 2008 Elsevier Inc. All rights reserved.