Chengcheng Hu

Chengcheng Hu

Director, Biostatistics - Phoenix Campus
Professor, Public Health
Professor, Statistics-GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-9308

Work Summary

Chengcheng Hu has worked on a broad range of areas including cancer, occupational health, HIV/AIDS, and aging. He has extensive collaborative research in conducting methodological research in the areas of survival analysis, longitudinal data, high-dimensional data, and measurement error. His current methodological interest, arising from studies of viral and human genetics and biomarkers, is to develop innovative methods to investigate the relationship between high-dimensional information and longitudinal outcomes or survival endpoints.

Research Interest

Chengcheng Hu, Ph.D., is an Associate Professor, Public Health and Director, Biostatistics, Phoenix campus at the Mel and Enid Zuckerman College of Public Health, University of Arizona. He is also Director of the Biometry Core on the Chemoprevention of Skin Cancer Project at the University of Arizona Cancer Center. Hu has worked on multiple federal grants in a broad range of areas including cancer, occupational health, HIV/AIDS, and aging. In addition to extensive experience in collaborative research, he has conducted methodological research in the areas of survival analysis, longitudinal data, high-dimensional data, and measurement error. His current methodological interest, arising from studies of viral and human genetics and biomarkers, is to develop innovative methods to investigate the relationship between high-dimensional information and longitudinal outcomes or survival endpoints. Hu joined the UA Mel and Enid Zuckerman College of Public Health in 2008. Prior to this he was an assistant professor of Biostatistics at the Harvard School of Public Health from 2002 to 2008. While at Harvard, he also served as senior statistician in the Pediatric AIDS Clinical Trials Group (PACTG) and the International Maternal Pediatric Adolescent AIDS Clinical Trials Group (IMPAACT). Hu received his Ph.D. and M.S. in Biostatistics from the University of Washington and a M.A. in Mathematics from the Johns Hopkins University.

Publications

Bermudez, Y., Stratton, S. P., Curiel-Lewandrowski, C., Warneke, J., Hu, C., Bowden, G. T., Dickinson, S. E., Dong, Z., Bode, A. M., Saboda, K., Brooks, C. A., Petricoin, E. F., Hurst, C. A., Alberts, D. S., & Einspahr, J. G. (2015). Activation of the PI3K/Akt/mTOR and MAPK Signaling Pathways in Response to Acute Solar-Simulated Light Exposure of Human Skin. Cancer prevention research (Philadelphia, Pa.), 8(8), 720-8.
BIO5 Collaborators
Clara N Curiel, Chengcheng Hu

The incidence of skin cancer is higher than all other cancers and continues to increase, with an average annual cost over $8 billion in the United States. As a result, identifying molecular pathway alterations that occur with UV exposure to strategize more effective preventive and therapeutic approaches is essential. To that end, we evaluated phosphorylation of proteins within the PI3K/Akt and MAPK pathways by immunohistochemistry in sun-protected skin after acute doses of physiologically relevant solar-simulated ultraviolet light (SSL) in 24 volunteers. Biopsies were performed at baseline, 5 minutes, 1, 5, and 24 hours after SSL irradiation. Within the PI3K/Akt pathway, we found activation of Akt (serine 473) to be significantly increased at 5 hours while mTOR (serine 2448) was strongly activated early and was sustained over 24 hours after SSL. Downstream, we observed a marked and sustained increase in phospho-S6 (serine 235/S236), whereas phospho-4E-BP1 (threonines 37/46) was increased only at 24 hours. Within the MAPK pathway, SSL-induced expression of phospho-p38 (threonine 180/tyrosine 182) peaked at 1 to 5 hours. ERK 1/2 was observed to be immediate and sustained after SSL irradiation. Phosphorylation of histone H3 (serine 10), a core structural protein of the nucleosome, peaked at 5 hours after SSL irradiation. The expression of both p53 and COX-2 was increased at 5 hours and was maximal at 24 hours after SSL irradiation. Apoptosis was significantly increased at 24 hours as expected and indicative of a sunburn-type response to SSL. Understanding the timing of key protein expression changes in response to SSL will aid in development of mechanistic-based approaches for the prevention and control of skin cancers.

Stratton, S. P., Alberts, D. S., Einspahr, J. G., Sagerman, P. M., Warneke, J. A., Curiel-Lewandrowski, C., Myrdal, P. B., Karlage, K. L., Nickoloff, B. J., Brooks, C., Saboda, K., Yozwiak, M. L., Krutzsch, M. F., Hu, C., Lluria-Prevatt, M., Dong, Z., Bowden, G. T., & Bartels, P. H. (2010). A phase 2a study of topical perillyl alcohol cream for chemoprevention of skin cancer. Cancer prevention research (Philadelphia, Pa.), 3(2), 160-9.
BIO5 Collaborators
Clara N Curiel, Chengcheng Hu

The chemopreventive and antitumor properties of perillyl alcohol (POH) that were studied preclinically indicate that topical POH inhibits both UVB-induced murine skin carcinogenesis (squamous cell tumor models) and 7,12-dimethylbenz(a)anthracene-induced murine melanoma (transgenic models involving tyrosinase-driven Ras). A previous phase 1 clinical trial in participants with normal-appearing skin showed that topical POH cream was well tolerated at a dose of 0.76% (w/w). Here, we performed a 3-month, double-blind, randomized, placebo-controlled phase 2a trial of two different doses of topical POH in individuals with sun-damaged skin. Participants applied POH cream twice daily to each dorsal forearm. Baseline and end-of-study biopsies were taken from each participant to evaluate whether the topical application of POH was effective in reversing actinic damage as evidenced by normalization of quantitative skin histopathologic scores and change in nuclear chromatin pattern as measured by karyometric analysis. There was a borderline reduction in the histopathologic score of the lower-dose POH group compared with the placebo (P = 0.1), but this was not observed in the high-dose group. However, in the high-dose group, a statistically significant reduction in the proportion of nuclei deviating from normal was observed by the use of karyometric analysis (P 0.01). There was no statistical significance shown in the lower-dose group. No changes were observed in p53 expression, cellular proliferation (by proliferating cell nuclear antigen expression), or apoptosis in either treatment group compared with the placebo group. These results suggest that whereas our karyometric analyses can detect a modest effect of POH in sun-damaged skin, improved delivery into the epidermis may be necessary.

Poplin, G. S., Miller, H., Sottile, J., Hu, C., Hill, J. R., & Burgess, J. L. (2013). Enhancing severe injury surveillance: The association between severe injury events and fatalities in US coal mines. Journal of Safety Research, 44(1), 31-35.
BIO5 Collaborators
Jefferey L Burgess, Chengcheng Hu
Dickinson, S. E., Janda, J., Criswell, J., Blohm-Mangone, K., Olson, E. R., Liu, Z., Barber, C., Rusche, J. J., Petricoin, E., Calvert, V., Einspahr, J. G., Dickinson, J. E., Stratton, S. P., Curiel-Lewandrowski, C., Saboda, K., Hu, C., Bode, A. M., Dong, Z., Alberts, D. S., & Bowden, G. T. (2016). Inhibition of Akt Enhances the Chemopreventive Effects of Topical Rapamycin in Mouse Skin. Cancer prevention research (Philadelphia, Pa.).
BIO5 Collaborators
Clara N Curiel, Chengcheng Hu

The PI3Kinase/Akt/mTOR pathway has important roles in cancer development for multiple tumor types, including UV-induced non-melanoma skin cancer. Immunosuppressed populations are at increased risk of aggressive cutaneous squamous cell carcinoma (SCC). Individuals who are treated with rapamycin, (sirolimus, a classical mTOR inhibitor) have significantly decreased rates of developing new cutaneous SCCs compared to those that receive traditional immunosuppression. However, systemic rapamycin use can lead to significant adverse events. Here we explored the use of topical rapamycin as a chemopreventive agent in the context of solar simulated light (SSL)-induced skin carcinogenesis. In SKH-1 mice, topical rapamycin treatment decreased tumor yields when applied after completion of 15 weeks of SSL exposure compared to controls. However, applying rapamycin during SSL exposure for 15 weeks, and continuing for 10 weeks after UV treatment, increased tumor yields. We also examined whether a combinatorial approach might result in more significant tumor suppression by rapamycin. We validated that rapamycin causes increased Akt (S473) phosphorylation in the epidermis after SSL, and show for the first time that this dysregulation can be inhibited in vivo by a selective PDK1/Akt inhibitor, PHT-427. Combining rapamycin with PHT-427 on tumor prone skin additively caused a significant reduction of tumor multiplicity compared to vehicle controls. Our findings indicate that patients taking rapamycin should avoid sun exposure, and that combining topical mTOR inhibitors and Akt inhibitors may be a viable chemoprevention option for individuals at high risk for cutaneous SCC.

Burgess, J. L., Duncan, M. D., Hu, C., Littau, S. R., Caseman, D., Kurzius-Spencer, M., Davis-Gorman, G., & McDonagh, P. F. (2012). Acute cardiovascular effects of firefighting and active cooling during rehabilitation. Journal of Occupational and Environmental Medicine, 54(11), 1413-1420.
BIO5 Collaborators
Jefferey L Burgess, Chengcheng Hu